Mapping Measurable iff Measurable on Generator
Theorem
Let $\struct {X, \Sigma}$ and $\struct {X', \Sigma'}$ be measurable spaces.
Suppose that $\Sigma'$ is generated by $\GG'$.
Then a mapping $f: X \to X'$ is $\Sigma \, / \, \Sigma'$-measurable if and only if:
- $\forall G' \in \GG': \map {f^{-1} } {G'} \in \Sigma$
That is, if and only if the preimage of every generator under $f$ is a measurable set.
Proof
Necessary Condition
Let $f$ be $\Sigma \, / \, \Sigma'$-measurable.
By definition of generated $\sigma$-algebra $\GG' \subseteq \Sigma'$.
Hence, in particular, $f$ satisfies:
- $\forall G' \in \GG': \map {f^{-1} } {G'} \in \Sigma$
$\Box$
Sufficient Condition
Suppose that:
- $\forall G' \in \GG': \map {f^{-1} } {G'} \in \Sigma$
Consider the pre-image $\sigma$-algebra $\Sigma' '$ on $X'$.
The supposition precisely states that $\GG' \subseteq \Sigma' '$.
By definition of generated $\sigma$-algebra, $\map \sigma {\GG'} \subseteq \Sigma' '$.
By definition of $\Sigma' '$, this precisely means:
- $\forall E' \in \Sigma': \map {f^{-1} } {E'} \in \Sigma$
That is, $f$ is $\Sigma \, / \, \Sigma'$-measurable.
$\blacksquare$
Sources
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $7.2$