Membership is Left Compatible with Ordinal Multiplication

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$, $y$, and $z$ be ordinals.

Then:

$\paren {x < y \land z > 0} \iff \paren {z \cdot x} < \paren {z \cdot y}$


Proof

Sufficient Condition

The proof of the sufficient condition shall proceed by Transfinite Induction on $y$.

$\Box$


Basis for the Induction

Both $x < 0$ and $\paren {x \cdot z} < \paren {0 \cdot z}$ are contradictory, so the if and only if statement holds for the condition that $y = 0$.

This proves the basis for the induction.

$\Box$


Induction Step

Suppose the biconditional statement holds for $y$. Then:

\(\ds x < y^+\) \(\leadsto\) \(\ds x < y \lor x = y\) Definition of Successor Set
\(\ds x < y \land z > 0\) \(\leadsto\) \(\ds \paren {z \cdot x} < \paren {z \cdot y}\) Inductive Hypothesis
\(\ds x = y\) \(\leadsto\) \(\ds \paren {z \cdot x} = \paren {z \cdot y}\) Leibniz's law
\(\ds z > 0\) \(\leadsto\) \(\ds \paren {z \cdot y} < \paren {\paren {z \cdot y} + z}\) Membership is Left Compatible with Ordinal Addition
\(\ds \) \(\leadsto\) \(\ds \paren {z \cdot y} < \paren {z \cdot y^+}\) Definition of Ordinal Multiplication
\(\ds \) \(\leadsto\) \(\ds \paren {z \cdot x} < \paren {z \cdot y^+}\) Transitivity of $<$ and Leibniz's law

In either case:

$\paren {z \cdot x} < \paren {z \cdot y^+}$

This proves the induction step.

$\Box$


Limit Case

Suppose $y$ is a limit ordinal:

\(\ds \) \(\) \(\ds \forall w \in y: \paren {\paren {x < w \land z > 0} \iff \paren {z \cdot x} < \paren {z \cdot w} }\) by hypothesis
\(\ds \) \(\leadsto\) \(\ds \paren {\exists w \in y: \paren {x < w \land z > 0} \iff \exists w \in y: \paren {z \cdot x} < \paren {z \cdot w} }\) Predicate Logic Manipulation
\(\ds \) \(\leadsto\) \(\ds \paren {\paren {x < \bigcup y \land z > 0} \iff \paren {z \cdot x} < \bigcup_{w \mathop \in y} \paren {z \cdot w} }\) Definition of Set Union
\(\ds \) \(\leadsto\) \(\ds \paren {\paren {x < y \land z > 0} \iff \paren {z \cdot x} < \bigcup_{w \mathop \in y} \paren {z \cdot w} }\) Limit Ordinal Equals its Union
\(\ds \) \(\leadsto\) \(\ds \paren {\paren {x < y \land z > 0} \iff \paren {z \cdot x} < \paren {z \cdot y} }\) Definition of Ordinal Multiplication

This proves the limit case.

$\Box$


Necessary Condition

Conversely, suppose $\paren {z \cdot x} < \paren {z \cdot y^+}$.

Then $z \ne 0$ because if it were equal, both sides of the inequality would be $0$.

So $z > 0$.

Furthermore:

$y < x \implies \paren {z \cdot y} < \paren {z \cdot x}$
$y = x \implies \paren {z \cdot y} = \paren {z \cdot x}$

So if $\paren {z \cdot x} < \paren {z \cdot y}$, then $y \ne x$ and $y \not < x$, so $x < y$ by Ordinal Membership is Trichotomy.

$\blacksquare$


Sources