Modulo Addition is Well-Defined/Real Modulus
Jump to navigation
Jump to search
Theorem
Let $z \in \R$ be a real number.
Let:
- $a \equiv b \pmod z$
and:
- $x \equiv y \pmod z$
where $a, b, x, y \in \R$.
Then:
- $a + x \equiv b + y \pmod z$
Proof
\(\ds a\) | \(\equiv\) | \(\ds b\) | \(\ds \pmod z\) | |||||||||||
\(\ds c\) | \(\equiv\) | \(\ds d\) | \(\ds \pmod z\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \bmod z\) | \(=\) | \(\ds b \bmod z\) | Definition of Congruence | ||||||||||
\(\ds x \bmod z\) | \(=\) | \(\ds y \bmod z\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists k_1 \in \Z: \, \) | \(\ds a - b\) | \(=\) | \(\ds k_1 z\) | ||||||||||
\(\ds \exists k_2 \in \Z: \, \) | \(\ds x - y\) | \(=\) | \(\ds k_2 z\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {a + x} - \paren {b + y}\) | \(=\) | \(\ds \paren {k_1 + k_2} z\) | Definition of Integer Addition | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a + x\) | \(\equiv\) | \(\ds b + y\) | \(\ds \pmod z\) | Definition of Congruence |
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.4$: Integer Functions and Elementary Number Theory: Exercise $24$