Modulo Addition is Well-Defined
Theorem
Let $m \in \Z$ be an integer.
Let $\Z_m$ be the set of integers modulo $m$.
The modulo addition operation on $\Z_m$, defined by the rule:
- $\eqclass a m +_m \eqclass b m = \eqclass {a + b} m$
is a well-defined operation.
That is:
- If $a \equiv b \pmod m$ and $x \equiv y \pmod m$, then $a + x \equiv b + y \pmod m$.
Corollary
It follows that:
- $\eqclass a m -_m \eqclass b m = \eqclass {a - b} m$
is a well-defined operation.
Real Modulus
Let $z \in \R$ be a real number.
Let:
- $a \equiv b \pmod z$
and:
- $x \equiv y \pmod z$
where $a, b, x, y \in \R$.
Then:
- $a + x \equiv b + y \pmod z$
Proof 1
We need to show that if:
- $\eqclass {x'} m = \eqclass x m$
- $\eqclass {y'} m = \eqclass y m$
then:
- $\eqclass {x' + y'} m = \eqclass {x + y} m$
Since:
- $\eqclass {x'} m = \eqclass x m$
and:
- $\eqclass {y'} m = \eqclass y m$
it follows from the definition of set of integers modulo $m$ that:
- $x \equiv x' \pmod m$
and:
- $y \equiv y' \pmod m$
By definition, we have:
- $x \equiv x' \pmod m \implies \exists k_1 \in \Z: x = x' + k_1 m$
- $y \equiv y' \pmod m \implies \exists k_2 \in \Z: y = y' + k_2 m$
which gives us:
- $x + y = x' + k_1 m + y' + k_2 m = x' + y' + \paren {k_1 + k_2} m$
As $k_1 + k_2$ is an integer, it follows that, by definition:
- $x + y \equiv \paren {x' + y'} \pmod m$
Therefore, by the definition of integers modulo $m$:
- $\eqclass {x' + y'} m = \eqclass {x + y} m$
$\blacksquare$
Proof 2
The equivalence class $\eqclass a m$ is defined as:
- $\eqclass a m = \set {x \in \Z: x = a + k m: k \in \Z}$
That is, the set of all integers which differ from $a$ by an integer multiple of $m$.
Thus the notation for addition of two set of integers modulo $m$ is not usually $\eqclass a m +_m \eqclass b m$.
What is more normally seen is $a + b \pmod m$.
Using this notation:
\(\ds a\) | \(\equiv\) | \(\ds b\) | \(\ds \pmod m\) | |||||||||||
\(\, \ds \land \, \) | \(\ds c\) | \(\equiv\) | \(\ds d\) | \(\ds \pmod m\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \bmod m\) | \(=\) | \(\ds b \bmod m\) | Definition of Congruence Modulo Integer | ||||||||||
\(\, \ds \land \, \) | \(\ds c \bmod m\) | \(=\) | \(\ds d \bmod m\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a\) | \(=\) | \(\ds b + k_1 m\) | for some $k_1 \in \Z$ | ||||||||||
\(\, \ds \land \, \) | \(\ds c\) | \(=\) | \(\ds d + k_2 m\) | for some $k_2 \in \Z$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a + c\) | \(=\) | \(\ds b + d + \paren {k_1 + k_2} m\) | Definition of Integer Addition | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a + c\) | \(\equiv\) | \(\ds b + d\) | \(\ds \pmod m\) | Definition of Modulo Addition |
$\blacksquare$
Examples
Modulo Addition: $2 + 3 \equiv -6 + 15 \pmod 4$
We have:
\(\ds 2\) | \(\equiv\) | \(\ds -6\) | \(\ds \pmod 4\) | Congruence Modulo $4$: $2 \equiv -6 \pmod 4$ | ||||||||||
\(\ds 3\) | \(\equiv\) | \(\ds 15\) | \(\ds \pmod 4\) | Congruence Modulo $4$: $3 \equiv 15 \pmod 4$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 + 3 = 5\) | \(\equiv\) | \(\ds -6 + 15 = 9\) | \(\ds \pmod 4\) |
Modulo Addition: $19 + 6 \equiv 11 + 2 \pmod 4$
We have:
\(\ds 19\) | \(\equiv\) | \(\ds 11\) | \(\ds \pmod 4\) | |||||||||||
\(\ds 6\) | \(\equiv\) | \(\ds 2\) | \(\ds \pmod 4\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 19 + 6 = 25\) | \(\equiv\) | \(\ds 11 + 2 = 13\) | \(\ds \pmod 4\) |
Sources
- 1964: Iain T. Adamson: Introduction to Field Theory ... (previous) ... (next): Chapter $\text {I}$: Elementary Definitions: $\S 1$. Rings and Fields: Example $4$
- 1970: B. Hartley and T.O. Hawkes: Rings, Modules and Linear Algebra ... (previous) ... (next): Chapter $1$: Rings - Definitions and Examples: $2$: Some examples of rings: Ring Example $2$
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $1$: Equivalence Relations: $\S 19 \beta$
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 14.3 \ \text {(i)}$: Congruence modulo $m$ ($m \in \N$)
- 1982: P.M. Cohn: Algebra Volume 1 (2nd ed.) ... (previous) ... (next): $\S 2.3$: Congruences: Theorem $1 \ \text{(i)}$
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.4$: Integer Functions and Elementary Number Theory: Law $\text{A}$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): congruence