Modulo Subtraction is Well-Defined/Examples/19-6 equiv 11-2 mod 4
Jump to navigation
Jump to search
Examples of Use of Modulo Subtraction is Well-Defined
We have:
\(\ds 19\) | \(\equiv\) | \(\ds 11\) | \(\ds \pmod 4\) | |||||||||||
\(\ds 6\) | \(\equiv\) | \(\ds 2\) | \(\ds \pmod 4\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 19 - 6 = 13\) | \(\equiv\) | \(\ds 11 - 2 = 9\) | \(\ds \pmod 4\) |
Sources
- 1971: George E. Andrews: Number Theory ... (previous) ... (next): $\text {4-1}$ Basic Properties of Congruences: Example $\text {4-4}$