# Newton's Identities/Proof 2

## Theorem

Let $X$ be a set of $n$ numbers $\set {x_1, x_2, \ldots, x_n}$.

Define:

 $\ds {\mathbf S}_m$ $=$ $\ds \set { \paren {j_1,\ldots,j_m} : 1 \le j_1 \lt \cdots \lt j_m \le n}$ $1 \le m \le n$ $\ds \map {e_m} {X}$ $=$ $\ds \begin{cases} 1 & m = 0\\ \displaystyle \sum_{ {\mathbf S}_m } x_{j_1} \cdots x_{j_m} & 1 \leq m \leq n \\ 0 & m \gt n \\ \end{cases}$ elementary symmetric function $\ds \map {p_k} X$ $=$ $\ds \begin{cases} \displaystyle n & k = 0 \\ \displaystyle \sum_{i \mathop = 1}^n x_i^k & k \ge 1 \\ \end{cases}$ power sums

Then Newton's Identities are:

 $\text {(1)}: \quad$ $\ds k \, \map {e_k} X$ $=$ $\ds \displaystyle \sum_{i \mathop = 1}^k \paren {-1}^{i-1} \map {e_{k-i} } X \map {p_i} X$ for $1 \leq k \leq n$ $\text {(2)}: \quad$ $\ds 0$ $=$ $\ds \displaystyle \sum_{i \mathop = k-n}^k \paren {-1}^{i-1} \map {e_{k-i} } X \map {p_i} X$ for $1 \leq n \lt k$

## Proof

### Outline

Calculus is used to prove identities (1) and (2) in a single effort.

The tools are Viète's Formulas, the calculus derivative of powers $x^n$ and logarithm $\ln \size x$, Maclaurin series expansion coefficients, mathematical induction, and Leibniz's Rule: One Variable.

### Lemma 1

 $\ds \prod_{r \mathop = 1}^n \paren {1 + x_r z}$ $=$ $\ds \sum_{m \mathop = 0}^n {\map {e_m} X} z^m$

Proof of Lemma 1

Begin with:

 $\text {(11)}: \quad$ $\ds \prod_{r \mathop = 1}^n \paren {x - x_r}$ $=$ $\ds \sum_{i \mathop = 0}^n \paren {-1}^{n - i} {\map {e_{n - i} } X} x^i$ Viète's Formulas

Change variables in $(11)$: $x = -1/z$.

$\Box$

### Lemma 2

Denote by $D^k \map f z$ the $k$th calculus derivative of $\map f z$.

Let:

 $\ds \map G z$ $=$ $\ds \displaystyle \prod_{k \mathop = 1}^n \paren {1 + x_k z}$ as in Lemma 1 $\ds \map F z$ $=$ $\ds \dfrac { \map {DQ} z }{\map Q z}$ the calculus derivative of $\ln \vert { \map Q z } \vert$

Then:

 $\text {(12)}: \quad$ $\ds \dfrac { D^m \map G {0} } { m! }$ $=$ $\ds \map { e_m } X$ $\text {(13)}: \quad$ $\ds \dfrac { D^m \map F {0} } { m! }$ $=$ $\ds \paren {-1}^m \map {p_{m+1} } X$

Proof of Lemma 2

 $\ds \map G z$ $=$ $\ds \sum_{m \mathop = 0}^n {\map {e_m} X} z^m$ by Lemma 1

Then identity (12) holds by Maclaurin series expansion applied to polynomial $G$.

Identity (13) will be proved after mathematical induction establishes (14) infra.

Let $\map {\mathbf P} m$ be the statement:

 $\text {(14)}: \quad$ $\ds D^m \map F z$ $=$ $\ds \sum_{i \mathop = 1}^n \dfrac{ m!\paren {-1}^m x_i^{m+1} }{ \paren { 1 + x_i z }^{m+1} }$ for $m \ge 0$

Basis for the induction: $m=0$

By calculus and the definition of $G$:

 $\ds \map F z$ $=$ $\ds \dfrac { D \map Q z}{\map Q z}$ $\ds \leadsto \ \$ $\ds$ $=$ $\ds \sum_{i \mathop = 1}^n \dfrac { x_i }{ 1 + x_i z }$

Then $\map {\mathbf P} 0$ is true.

Induction step $\map {\mathbf P} m$ implies $\map {\mathbf P} {m+1}$:

 $\ds D^{m + 1} \map F z$ $=$ $\ds \map D {\sum_{i \mathop = 1}^n \dfrac {m! \paren {-1}^m x_i^{m + 1} } {\paren {1 + x_i z}^{m + 1} } }$ by induction hypothesis $\map {\mathbf P} m$ $\ds$ $=$ $\ds \sum_{i \mathop = 1}^n \dfrac{ m! \paren {-1}^m x_i^{m + 1} \paren {-1} \paren {m + 1} x_i} {\paren {1 + x_i z}^{m + 2} }$ Power Rule for Derivatives: $\dfrac {\d u^{-n} } {\d z } = \paren {-n} u^{-n - 1} \dfrac {\d u} {\d z}$

Simplify to prove $\map {\mathbf P} {m + 1}$ is true.

The induction is complete.

To prove equation (13), first let $z = 0$ in equation (14).

Divide by $m!$ to isolate $\map {p_{m + 1} } X$, which proves (13).

$\Box$

### Lemma 3

 $\text {(15)}: \quad$ $\ds \paren {m + 1} \map {e_{m + 1} } X$ $=$ $\ds \sum_{r \mathop = 0}^m \paren {-1}^r {\map {e_{m - r} } X} {\map {p_{r + 1} } X}$ for $m \ge 0$

Proof of Lemma 3

Begin with $D \map G z = {\map F z} {\map G z}$ and differentiate $m$ times on variable $z$:

 $\ds D^{m + 1} \map G z$ $=$ $\ds \sum_{r \mathop = 0}^m {\dbinom m r} D^r {\map F z} D^{m - r} {\map G z}$ Leibniz's Rule/One Variable $\ds D^{m + 1} {\map G 0}$ $=$ $\ds \sum_{r \mathop = 0}^m \dbinom m r r! \paren {-1}^r {\map {p_{r + 1} } X} \paren {m - r}! \map {e_{m-r} } X$ Evaluate at $z = 0$ and use equations (12) and (13) in Lemma 2 $\ds \paren {m + 1} {\map {e_m} X}$ $=$ $\ds \sum_{r \mathop = 0}^m \paren {-1}^r {\map {e_{m-r} } X} {\map {p_{r+1} } X}$ Use (12), then collect factorials and simplify

$\Box$

Proof of the Theorem

Change indices via equations $m + 1 = k$, $r + 1 = i$.

The summation is from $i = 0 + 1$ to $i = m + 1$, which gives range $i = 1$ to $k$.

Subscript $m - r$ equals $k - 1- i + 1$, which simplifies to $k - i$.

Then:

 $\text {(16)}: \quad$ $\ds k \map {e_k} X$ $=$ $\ds \sum_{i \mathop = 1}^{k} \paren {-1}^{i - 1} {\map {e_{k - i} } X} {\map {p_i} X}$ for $k \ge 1$, which is equation (1)

To prove (2), assume $k > n \ge 1$ and $X = \set {x_1, \ldots, x_n}$.

Equation (16) implies:

 $\text {(117)}: \quad$ $\ds 0$ $=$ $\ds k \map {e_{k} } X$ because $\map {e_j} X = 0$ for $j = n + 1, \ldots, k$. $\ds \leadsto \ \$ $\ds 0$ $=$ $\ds \sum_{i \mathop = 1}^k \paren {-1}^{i - 1} {\map {e_{k - i} } X} {\map {p_i} X}$ by (16) for $k \ge 1$ $\ds \leadsto \ \$ $\ds 0$ $=$ $\ds \sum_{i \mathop = k - n}^k \paren {-1}^{i - 1} {\map {e_{k - i} } X} {\map {p_i} X}$ because $\map {e_{k - i} } X = 0$ when $n + 1 \le k - i \le k$

Then (2) holds.

$\blacksquare$