Norm of Hermitian Operator
Theorem
Let $\mathbb F \in \set {\R, \C}$.
Let $\struct {\HH, \innerprod \cdot \cdot_\HH}$ be a Hilbert space over $\mathbb F$.
Let $A : \HH \to \HH$ be a bounded Hermitian operator.
Let $\norm \cdot_\HH$ be the inner product norm on $\HH$.
Then the norm of $A$ satisfies:
- $\norm A = \sup \set {\size {\innerprod {A h} h_\HH}: h \in \HH, \norm h_\HH = 1}$
Corollary
Suppose that:
- $\forall h \in \HH: \innerprod {A h} h_\HH = 0$
Then $A$ is the zero operator $\mathbf 0$.
Proof
Let:
- $M = \sup \set {\size {\innerprod {A h} h_\HH}: h \in \HH, \norm h_\HH = 1}$
To show that $M = \norm A$ we first show that:
- $M \le \norm A$
We will then show that:
- $\norm A \le M$
Let $x \in \HH$ be such that:
- $\norm x_\HH = 1$.
Then we have:
\(\ds \size {\innerprod {A x} x_\HH}\) | \(\le\) | \(\ds \norm {A x}_\HH \norm x_\HH\) | Cauchy-Bunyakovsky-Schwarz Inequality for Inner Product Spaces | |||||||||||
\(\ds \) | \(\le\) | \(\ds \norm A \norm x_\HH^2\) | Fundamental Property of Norm on Bounded Linear Transformation | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm A\) | since $\norm x_\HH = 1$ |
So taking the supremum over:
- $\set {x \in \HH : \norm x_\HH = 1}$
we have:
- $M \le \norm A$
We will now show that:
- $\norm A \le M$
Let $x, y \in \HH$.
Since $A$ is linear operator, we have:
- $\innerprod {\map A {u + v} } {u + v}_\HH = \innerprod {A u + A v} {u + v}_\HH$
and:
- $\innerprod {\map A {u - v} } {u - v}_\HH = \innerprod {A u - A v} {u - v}_\HH$
Using Inner Product is Sesquilinear, we have:
- $\innerprod {\map A {u + v} } {u + v}_\HH = \innerprod {A u} u_\HH + \innerprod {A u} v_\HH + \innerprod {A v} u_\HH + \innerprod {A v} v_\HH$
and:
- $\innerprod {\map A {u - v} } {u - v}_\HH = \innerprod {A u} u_\HH - \innerprod {A u} v_\HH - \innerprod {A v} u_\HH + \innerprod {A v} v_\HH$
We therefore obtain:
- $\innerprod {\map A {u + v} } {u + v}_\HH - \innerprod {\map A {u - v} } {u - v}_\HH = 2 \innerprod {A u} v_\HH + 2 \innerprod {A v} u_\HH$
We have:
\(\ds 2 \innerprod {A u} v_\HH + 2 \innerprod {A v} u_\HH\) | \(=\) | \(\ds 2 \paren {\innerprod {A u} v_\HH + \innerprod {A v} u_\HH}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 \paren {\innerprod {A u} v_\HH + \innerprod v {A u}_\HH }\) | Definition of Hermitian Operator | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \paren {\innerprod {A u} v_\HH + \overline {\innerprod {A u} v_\HH} }\) | using conjugate symmetry of the inner product | |||||||||||
\(\ds \) | \(=\) | \(\ds 4 \map \Re {\innerprod {A u} v_\HH}\) | Sum of Complex Number with Conjugate |
so we have:
- $4 \map \Re {\innerprod {A u} v_\HH} = \innerprod {\map A {u + v} } {u + v}_\HH - \innerprod {\map A {u - v} } {u - v}_\HH$
Recall that for each $h \in \HH$ with $\norm h_\HH = 1$, we have:
- $\size {\innerprod {A h} h_\HH} \le M$
by the definition of supremum.
From Operator is Hermitian iff Numerical Range is Real, we have:
- $\innerprod {A h} h_\HH$ is a real number.
So, from the definition of the absolute value, we have:
- $\innerprod {A h} h_\HH \le M$
We can therefore see that:
- $\innerprod {A \dfrac h {\norm h_\HH} } {\dfrac h {\norm h_\HH} }_\HH \le M$
for each $h \in \HH \setminus \set 0$.
So from Inner Product is Sesquilinear, we obtain:
- $\innerprod {A h} h_\HH \le M \norm h_\HH^2$
Note that if $h = 0$, from Inner Product with Zero Vector we have:
- $\innerprod {A h} h_\HH = 0$
and:
- $\norm h_\HH = 0$
so the inequality also holds for $h = 0$, and we obtain:
- $\innerprod {A h} h_\HH \le M \norm h_\HH^2$
for all $h \in \HH$.
So, we obtain:
\(\ds 4 \map \Re {\innerprod {A u} v_\HH}\) | \(=\) | \(\ds \innerprod {\map A {u + v} } {u + v}_\HH - \innerprod {\map A {u - v} } {u - v}_\HH\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds M \norm {u + v}_\HH^2 - M \norm {u - v}_\HH^2\) | applying the above inequality with $h = u + v$ and $h = u - v$ | |||||||||||
\(\ds \) | \(\le\) | \(\ds M \paren {\norm {u + v}_\HH^2 + \norm {u - v}_\HH^2}\) | Definition of Norm on Vector Space | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 M \paren {\norm u_\HH^2 + \norm v_\HH^2}\) | Parallelogram Law (Inner Product Space) |
Now, take $u \in \HH$ with $A u \ne 0$.
Let:
- $v = \dfrac {\norm u_\HH} {\norm {A u}_\HH} A u$
Then, we have:
\(\ds \norm v_\HH\) | \(=\) | \(\ds \norm {\frac {\norm u_\HH} {\norm {A u}_\HH} A u}_\HH\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\norm u_\HH} {\norm {A u}_\HH} \norm {A u}_\HH\) | using positive homogeneity of the norm | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm u_\HH\) |
and:
\(\ds \innerprod {A u} v_\HH\) | \(=\) | \(\ds \innerprod {A u} {\frac {\norm u_\HH} {\norm {A u}_\HH} A u}_\HH\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\norm u_\HH} {\norm {A u}_\HH} \innerprod {A u} {A u}_\HH\) | Inner Product is Sesquilinear | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\norm u_\HH} {\norm {A u}_\HH} \norm {A u}_\HH^2\) | Definition of Inner Product Norm | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm u_\HH \norm {A u}_\HH\) |
Since from the definition of a norm:
- $\norm u_\HH \norm {A u}_\HH$ is a real number
we have that:
- $\innerprod {A u} v$ is a real number.
So we have:
- $4 \map \Re {\innerprod {A u} v} = 4 \norm u_\HH \norm {A u}_\HH$
giving:
- $4 \norm u_\HH \norm {A u}_\HH \le 2 M \paren {\norm u_\HH^2 + \norm v_\HH^2}$
Since $\norm u = \norm v$, we have:
- $4 \norm u_\HH \norm {A u}_\HH \le 4 M \norm u_\HH^2$
That is:
- $\norm u_\HH \norm {A u}_\HH \le M \norm u_\HH^2$
for all $u \in \HH$ with $A u \ne 0$.
Note that we have:
- $M \norm u_\HH^2 \ge 0$
so the inequality also holds for $u \in \HH$ with $A u = 0$.
So, for $u \in \HH \setminus \set 0$, we have:
- $\norm {A u}_\HH \le M \norm u_\HH$
Since $\map A 0 = 0$, this inequality also holds for $u = 0$.
So:
- $M \in \set {c > 0: \forall h \in \HH: \norm {A h}_\HH \le c \norm h_\HH}$
From definition $4$ of the operator norm, we have:
- $\norm A = \inf \set {c > 0: \forall h \in \HH: \norm {A h}_\HH \le c \norm h_\HH}$
so, from the definition of infimum we have:
- $\norm A \le M$
Since:
- $M \le \norm A$
and:
- $\norm A \le M$
we have:
- $\norm A = M = \sup \set {\size {\innerprod {A h} h_\HH}: h \in \HH, \norm h_\HH = 1}$
$\blacksquare$
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next) $\text {II}.2.13$
- 2020: James C. Robinson: Introduction to Functional Analysis ... (previous) ... (next) $16.1$: Eigenvalues of Self-Adjoint Operators