Number of Quadratic Residues of Prime
Theorem
Let $p$ be an odd prime.
Then $p$ has $\dfrac {p - 1} 2$ quadratic residues and $\dfrac {p - 1} 2$ quadratic non-residues.
The quadratic residues are congruent modulo $p$ to the integers $1^2, 2^2, \ldots, \paren {\dfrac {p - 1} 2}$.
Proof
The quadratic residues of $p$ are the integers which result from the evaluation of the squares:
- $1^2, 2^2, \ldots, \paren {p - 1}^2$ modulo $p$
But:
- $r^2 = \paren {-r}^2$
and so these $p - 1$ integers fall into congruent pairs modulo $p$, namely:
\(\ds 1^2\) | \(\equiv\) | \(\ds \paren {p - 1}^2\) | \(\ds \pmod p\) | |||||||||||
\(\ds 2^2\) | \(\equiv\) | \(\ds \paren {p - 2}^2\) | \(\ds \pmod p\) | |||||||||||
\(\ds \) | \(\ldots\) | \(\ds \) | ||||||||||||
\(\ds \paren {\frac {p - 1} 2}^2\) | \(\equiv\) | \(\ds \paren {\frac {p + 1} 2}^2\) | \(\ds \pmod p\) | Note that we require $p$ to be odd here. |
Therefore each quadratic residue of $p$ is congruent modulo $p$ to one of the $\dfrac {p - 1} 2$ integers $1^2, 2^2, \ldots, \paren {\dfrac {p - 1} 2}^2$.
Note that as $r^2 \not \equiv 0 \pmod p$ for $1 \le r < p$, the integer $0$ is not among these.
All we need to do now is show that no two of these integers are congruent modulo $p$.
So, suppose that $r^2 \equiv s^2 \pmod p$ for some $1 \le r \le s \le \dfrac {p - 1} 2$.
What we are going to do is prove that $r = s$.
Now $r^2 \equiv s^2 \pmod p$ means that $p$ is a divisor of $r^2 - s^2 = \paren {r + s} \paren {r - s}$.
From Euclid's Lemma either:
- $p \divides \paren {r + s}$
or:
- $p \divides \paren {r - s}$
$p \divides \paren {r + s}$ is impossible as $2 \le r + s \le p - 1$.
Take $p \divides \paren {r - s}$.
As $0 \le r - s < \dfrac {p - 1} 2$, that can happen only when:
- $r - s = 0$
or:
- $r = s$
So there must be exactly $\dfrac {p - 1} 2$ quadratic residues.
That means there must also be exactly $\dfrac {p - 1} 2$ quadratic non-residues.
$\blacksquare$