Opposite Sides Equal implies Parallelogram
Jump to navigation
Jump to search
Theorem
Let $ABCD$ be a convex quadrilateral with $AB = CD$ and $BC = AD$.
Then $ABCD$ is a parallelogram.
Proof
Join $AC$.
\(\text {(1)}: \quad\) | \(\ds AB\) | \(=\) | \(\ds CD\) | by hypothesis | ||||||||||
\(\text {(2)}: \quad\) | \(\ds BC\) | \(=\) | \(\ds DA\) | by hypothesis | ||||||||||
\(\text {(3)}: \quad\) | \(\ds AC\) | \(=\) | \(\ds CA\) | Equality is Reflexive | ||||||||||
\(\text {(4)}: \quad\) | \(\ds \Delta ABC\) | \(=\) | \(\ds \Delta CDA\) | SSS from $(1)$, $(2)$, and $(3)$ | ||||||||||
\(\text {(5)}: \quad\) | \(\ds \angle BCA\) | \(=\) | \(\ds \angle DAC\) | from $(4)$ | ||||||||||
\(\text {(6)}: \quad\) | \(\ds \angle BAC\) | \(=\) | \(\ds \angle DCA\) | from $(4)$ | ||||||||||
\(\text {(7)}: \quad\) | \(\ds BC\) | \(\parallel\) | \(\ds DA\) | Equal Alternate Angles implies Parallel Lines from $(5)$ | ||||||||||
\(\text {(8)}: \quad\) | \(\ds BA\) | \(\parallel\) | \(\ds DC\) | Equal Alternate Angles implies Parallel Lines from $(6)$ |
From $(7)$ and $(8)$, it follows by definition that $ABCD$ is a parallelogram.
$\blacksquare$
Sources
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): parallelogram