Ordinal Multiplication is Left Distributive

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$, $y$, and $z$ be ordinals.

Let $\times$ denote ordinal multiplication.

Let $+$ denote ordinal addition.


Then:

$x \times \paren {y + z} = \paren {x \times y} + \paren {x \times z}$


Proof

The proof shall proceed by Transfinite Induction, as follows:


Basis for the Induction

Let $0$ denote the ordinal zero.

\(\ds x \times \paren {y + 0}\) \(=\) \(\ds x \times y\) Definition of Ordinal Addition
\(\ds \) \(=\) \(\ds \paren {x \times y} + 0\) Definition of Ordinal Addition
\(\ds \) \(=\) \(\ds \paren {x \times y} + \paren {x \times 0}\) Definition of Ordinal Multiplication

This proves the basis for the induction.


Induction Step

\(\ds x \times \paren {y + z}\) \(=\) \(\ds \paren {x \times y} + \paren {x \times z}\) Inductive Hypothesis
\(\ds \leadsto \ \ \) \(\ds x \times \paren {y + z^+}\) \(=\) \(\ds x \times \paren {y + z}^+\) Definition of Ordinal Addition
\(\ds \) \(=\) \(\ds \paren {x \times \paren {y + z} } + x\) Definition of Ordinal Multiplication
\(\ds \) \(=\) \(\ds \paren {\paren {x \times y} + \paren {x \times z} } + x\) Inductive Hypothesis
\(\ds \) \(=\) \(\ds \paren {x \times y} + \paren {\paren {x \times z} + x}\) Ordinal Addition is Associative
\(\ds \) \(=\) \(\ds \paren {x \times y} + \paren {x \times z^+}\) Definition of Ordinal Multiplication

This proves the induction step.


Limit Case

The inductive hypothesis for the limit case states that:

$x \times \paren {y + w} = \paren {x \times y} + \paren {x \times w}$ for all $w \in z$ and $z$ is a limit ordinal.


The proof shall proceed by cases:


Case 1

Suppose $x = 0$.

\(\ds x \times \paren {y + z}\) \(=\) \(\ds 0\) Ordinal Multiplication by Zero
\(\ds \) \(=\) \(\ds 0 + 0\) Definition of Ordinal Addition
\(\ds \) \(=\) \(\ds \paren {x \times y} + \paren {x \times z}\) Ordinal Multiplication by Zero


Case 2

Suppose that $x \ne 0$.

Since $w$ is a limit ordinal, $y + w$ and $x \times w$ are limit ordinals by Limit Ordinals Preserved Under Ordinal Addition and Limit Ordinals Preserved Under Ordinal Multiplication.

\(\ds x \times \paren {y + z}\) \(=\) \(\ds \bigcup_{w \mathop \in \paren {y + z} } \paren {x \times w}\) Definition of Ordinal Multiplication
\(\ds \paren {x \times y} + \paren {x \times z}\) \(=\) \(\ds \bigcup_{v \mathop \in \paren {x \times z} } \paren {x \times y} + v\) Definition of Ordinal Addition


Take any $w \in y + z$.

It follows that $w \in y \lor \paren {y \subseteq w \land w \in y + z}$ by Relation between Two Ordinals and Transitive Set is Proper Subset of Ordinal iff Element of Ordinal.

Thus, $w \in y \lor w = y + u$ for some $u \in z$ by Ordinal Subtraction when Possible is Unique.


If $w < y$, then:

\(\ds x \times w\) \(\in\) \(\ds x \times y\) Membership is Left Compatible with Ordinal Multiplication
\(\ds \) \(\subseteq\) \(\ds \paren {x \times y} + v\) Ordinal is Less than Sum


If $w = y + u$, then:

\(\ds x \times w\) \(=\) \(\ds x \times \paren {y + u}\) Definition of $w$
\(\ds \) \(=\) \(\ds \paren {x \times y} + \paren {x \times u}\) Inductive Hypothesis
\(\ds x \times u\) \(\in\) \(\ds x \times z\) Membership is Left Compatible with Ordinal Multiplication
\(\ds \) \(=\) \(\ds \paren {x \times y} + v\) setting $v$ to $x \times u$

By Supremum Inequality for Ordinals:

$x \times \paren {y + z} \subseteq \paren {x \times y} + \paren {x \times z}$


Conversely, if $v \in x \times z$, then:

\(\ds \exists w \in z: \, \) \(\ds v\) \(\in\) \(\ds x \times w\) Ordinal is Less than Ordinal times Limit
\(\ds \leadsto \ \ \) \(\ds \paren {x \times y} + v\) \(=\) \(\ds \paren {x \times y} + \paren {x \times w}\) Substitutivity of Class Equality
\(\ds \) \(=\) \(\ds x \times \paren {y + w}\) Inductive Hypothesis

By Supremum Inequality for Ordinals:

$\paren {x \times y} + \paren {x \times z} \subseteq x \times \paren {y + z}$


By definition of set equality:

$x \times \paren {y + z} = \paren {x \times y} + \paren {x \times z}$

This proves the limit case.

$\blacksquare$


Sources