Pappus's Hexagon Theorem/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A, B, C$ be a set of collinear points.

Let $a, b, c$ be another set of collinear points.

Let $X, Y, Z$ be the points of intersection of each of the straight lines $Ab$ and $aB$, $Ac$ and $aC$, and $Bc$ and $bC$.


Then $X, Y, Z$ are collinear points.


Proof

PappusHexagonTheorem-1.png

The notation has been changed to match the source.

Let $ACE$ be collinear and $BFD$ also be collinear.

Join $ABCDEF$ in order.

The points where opposite sides of the hexagon cut each other are $NLM$:

  • $AB$ and $DE$ cross at $L$
  • $BC$ and $EF$ cross at $N$
  • $CD$ and $FA$ cross at $M$

$NLM$ are to be proved collinear.

There are two cases.

Case 1: $EF$ not $\parallel CD$.

Produce $EF$ to meet $CD$ at $U$.

Label points $V$ and $W$ in $\triangle UVW$.

Apply Menelaus's Theorem to five transversals of $\triangle UVW$.

\(\text {(1)}: \quad\) \(\ds \dfrac{UE}{EV} \cdot \dfrac {VA}{AW} \cdot \dfrac {WC}{CU}\) \(=\) \(\ds -1\) Menelaus's Theorem for $ECA$ in $\triangle ABC$
\(\text {(2)}: \quad\) \(\ds \dfrac{WC}{CU} \cdot \dfrac {UN}{NV} \cdot \dfrac {VB}{BW}\) \(=\) \(\ds -1\) Menelaus's Theorem for $CNB$ in $\triangle ABC$
\(\text {(3)}: \quad\) \(\ds \dfrac{UE}{EV} \cdot \dfrac {VL}{LW} \cdot \dfrac {WD}{DU}\) \(=\) \(\ds -1\) Menelaus's Theorem for $ELD$ in $\triangle ABC$
\(\text {(4)}: \quad\) \(\ds \dfrac{UF}{FV} \cdot \dfrac {VA}{AW} \cdot \dfrac {WM}{MU}\) \(=\) \(\ds -1\) Menelaus's Theorem for $AMF$ in $\triangle ABC$
\(\text {(5)}: \quad\) \(\ds \dfrac{UF}{FV} \cdot \dfrac {VB}{BW} \cdot \dfrac {WD}{DU}\) \(=\) \(\ds -1\) Menelaus's Theorem for $BFD$ in $\triangle ABC$

Multiply $(2) \cdot (3) \cdot (4)$:

\(\ds \dfrac{WC}{CU} \cdot \dfrac {UN}{NV} \cdot \dfrac {VB}{BW} \cdot \dfrac{UE}{EV} \cdot \dfrac {VL}{LW} \cdot \dfrac {WD}{DU} \cdot \dfrac{UF}{FV} \cdot \dfrac {VA}{AW} \cdot \dfrac {WM}{MU}\) \(=\) \(\ds -1\)
\(\text {(6)}: \quad\) \(\ds \dfrac {UN}{NV} \cdot \dfrac {VL}{LW} \cdot \dfrac {WM}{MU} \cdot \paren {\dfrac{WC}{CU} \cdot \dfrac {VB}{BW} \cdot \dfrac{UE}{EV} \cdot \dfrac {WD}{DU} \cdot \dfrac{UF}{FV} \cdot \dfrac {VA}{AW} }\) \(=\) \(\ds -1\) rearranging

Multiply $(1) \cdot (5)$:

\(\ds \dfrac{UE}{EV} \cdot \dfrac {VA}{AW} \cdot \dfrac {WC}{CU} \cdot \dfrac{UF}{FV} \cdot \dfrac {VB}{BW} \cdot \dfrac {WD}{DU}\) \(=\) \(\ds 1\)
\(\text {(7)}: \quad\) \(\ds \dfrac {WC}{CU} \cdot \dfrac {VB}{BW} \cdot \dfrac{UE}{EV} \cdot \dfrac {WD}{DU} \cdot \dfrac{UF}{FV} \cdot \dfrac {VA}{AW}\) \(=\) \(\ds 1\) rearranging

Multiply $(7)$ by $-1$ and equate the left hand side of $(6)$ to the left hand side of $(7)$:

\(\ds \dfrac {UN}{NV} \cdot \dfrac {VL}{LW} \cdot \dfrac {WM}{MU} \cdot \paren {\dfrac{WC}{CU} \cdot \dfrac {VB}{BW} \cdot \dfrac{UE}{EV} \cdot \dfrac {WD}{DU} \cdot \dfrac{UF}{FV} \cdot \dfrac {VA}{AW} }\) \(=\) \(\ds - \dfrac {WC}{CU} \cdot \dfrac {VB}{BW} \cdot \dfrac{UE}{EV} \cdot \dfrac {WD}{DU} \cdot \dfrac{UF}{FV} \cdot \dfrac {VA}{AW}\)
\(\ds \dfrac {UN}{NV} \cdot \dfrac {VL}{LW} \cdot \dfrac {WM}{MU}\) \(=\) \(\ds - 1\)

By Menelaus's Theorem, $NLM$ are collinear.

$\Box$


Case 2: $EF \parallel CD$ (and $BC \parallel AF$).

PappusHexagonTheorem-3.png


$EF \parallel CD$ gives similar triangles.

For the first two, $\angle B$ is shared.

\(\ds \angle BVN\) \(=\) \(\ds \angle BWC\) Parallelism implies Equal Corresponding Angles
\(\ds \triangle BVN\) \(\sim\) \(\ds \triangle BWC\) Triangles with Two Equal Angles are Similar
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \dfrac{VN}{BV}\) \(=\) \(\ds \dfrac{WC}{BW}\)


\(\ds \angle BVF\) \(=\) \(\ds \angle BWD\) Parallelism implies Equal Corresponding Angles
\(\ds \triangle BVF\) \(\sim\) \(\ds \triangle BWD\) Triangles with Two Equal Angles are Similar
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \dfrac{BV}{VF}\) \(=\) \(\ds \dfrac{BW}{WD}\)


For the next two, $\angle A$ is shared.

\(\ds \angle AWM\) \(=\) \(\ds \angle AVF\) Parallelism implies Equal Corresponding Angles
\(\ds \triangle AWM\) \(\sim\) \(\ds \triangle AVF\) Triangles with Two Equal Angles are Similar
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \dfrac{AW}{WM}\) \(=\) \(\ds \dfrac{AV}{VF}\)


\(\ds \angle AWC\) \(=\) \(\ds \angle AVE\) Parallelism implies Equal Corresponding Angles
\(\ds \triangle AWC\) \(\sim\) \(\ds \triangle AVE\) Triangles with Two Equal Angles are Similar
\(\text {(4)}: \quad\) \(\ds \dfrac{WC}{AW}\) \(=\) \(\ds \dfrac{VE}{AV}\)


\(\ds \angle EVL\) \(=\) \(\ds \angle DWL\) Parallelism implies Equal Alternate Angles
\(\ds \angle ELV\) \(=\) \(\ds \angle DLW\) Vertical Angle Theorem
\(\ds \triangle EVL\) \(\sim\) \(\ds \triangle DWL\) Triangles with Two Equal Angles are Similar
\(\text {(5)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \dfrac{EV}{VL}\) \(=\) \(\ds \dfrac{DW}{WL}\)


Multiply the left hand side of $(1)$ through $(5)$ together as the new left hand side.

Multiply the right hand side of $(1)$ through $(5)$ together as the new right hand side.

\(\text {(6)}: \quad\) \(\ds \dfrac {VN}{BV} \cdot \dfrac {BV}{VF} \cdot \dfrac {AW}{WM} \cdot \dfrac {WC}{AW} \cdot \dfrac {EV}{VL}\) \(=\) \(\ds \dfrac {WC}{BW} \cdot \dfrac {BW}{WD} \cdot \dfrac {AV}{VF} \cdot \dfrac {VE}{AV} \cdot \dfrac {DW}{WL}\)
\(\ds \dfrac {VN}{VF} \cdot \dfrac {WC}{WM} \cdot \dfrac {EV}{VL}\) \(=\) \(\ds \dfrac {WC}{BW} \cdot \dfrac {BW}{WD} \cdot \dfrac {AV}{VF} \cdot \dfrac {VE}{AV} \cdot \dfrac {DW}{WL}\) cancel $BV$ and $AW$
\(\ds \dfrac {VN}{VF} \cdot \dfrac {WC}{WM} \cdot \dfrac {EV}{VL}\) \(=\) \(\ds \dfrac {WC}{WD} \cdot \dfrac {VE}{VF} \cdot \dfrac {DW}{WL}\) cancel $BW$ and $AV$
\(\ds \dfrac {VN}{VF} \cdot \dfrac {WC}{WM} \cdot \dfrac {VE}{VL}\) \(=\) \(\ds \dfrac {WC}{WD} \cdot \dfrac {VE}{VF} \cdot \dfrac {WD}{WL}\) reverse $EV$ and $DW$
\(\ds \dfrac {VN}{VF} \cdot \dfrac {WC}{WM} \cdot \dfrac {VE}{VL}\) \(=\) \(\ds \dfrac {WC}{WL} \cdot \dfrac {VE}{VF}\) cancel $WD$
\(\ds \dfrac {VN}{VL} \cdot \dfrac {WC}{WM}\) \(=\) \(\ds \dfrac {WC}{WL}\) cancel $\dfrac {VE} {VF}$
\(\ds \dfrac {VN}{WM}\) \(=\) \(\ds \dfrac {VL}{WL}\) cancel $WC$ and rearrange
\(\ds \angle LVN\) \(=\) \(\ds \angle LWM\) Parallelism implies Equal Alternate Angles
\(\ds \triangle LVN\) \(\sim\) \(\ds \triangle LWM\) Triangles with One Equal Angle and Two Sides Proportional are Similar
\(\ds \leadsto \ \ \) \(\ds \angle NLV\) \(=\) \(\ds \angle MLW\)

By by hypothesis:

$VLW$ are collinear

Suppose $NLM$ are not collinear.

Then:

$\angle NLV \ne \angle MLW$

But this is a contradiction, since $\triangle NLV \sim \triangle MLW$ and $\angle NLV = \angle MLW$.

Hence, $NLM$ are collinear.

The result follows.

$\blacksquare$


Sources