Parametric Equation/Examples/Circle
Jump to navigation
Jump to search
Examples of Parametric Equations
Let $\CC$ be the circle embedded in a Cartesian plane with the equation:
- $x^2 + y^2 = 16$
This can be expressed in parametric equations as:
\(\ds x\) | \(=\) | \(\ds 4 \cos \theta\) | ||||||||||||
\(\ds y\) | \(=\) | \(\ds 4 \sin \theta\) |
where $\theta$ is the parameter representing the angle between the $x$-axis and the point $\paren {x, y}$ on $\CC$.
Each point on $\CC$ corresponds exactly to a value of $\theta$ such that $\theta \in \hointr 0 {2 \pi}$.
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): parametric equations
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): parametric equations