Parametric Equation/Examples/Ellipse
Jump to navigation
Jump to search
Examples of Parametric Equations
Let $\EE$ be the ellipse embedded in a Cartesian plane with the equation:
- $\dfrac {x^2} {a^2} + \dfrac {y^2} {b^2} = 1$
This can be expressed in parametric equations as:
\(\ds x\) | \(=\) | \(\ds a \cos \phi\) | ||||||||||||
\(\ds y\) | \(=\) | \(\ds b \sin \phi\) |
where $\phi$ is the parameter representing the eccentric angle of the point $\paren {x, y}$ on $\EE$.
Each point on $\CC$ corresponds exactly to a value of $\phi$ such that $\phi \in \hointr 0 {2 \pi}$.
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): parametric equations
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): parametric equations