Parametric Equation/Examples/Ellipse

From ProofWiki
Jump to navigation Jump to search

Examples of Parametric Equations

Let $\EE$ be the ellipse embedded in a Cartesian plane with the equation:

$\dfrac {x^2} {a^2} + \dfrac {y^2} {b^2} = 1$

This can be expressed in parametric equations as:

\(\ds x\) \(=\) \(\ds a \cos \phi\)
\(\ds y\) \(=\) \(\ds b \sin \phi\)

where $\phi$ is the parameter representing the eccentric angle of the point $\paren {x, y}$ on $\EE$.

Each point on $\CC$ corresponds exactly to a value of $\phi$ such that $\phi \in \hointr 0 {2 \pi}$.


Sources