Parametric Equations for Evolute
Jump to navigation
Jump to search
Theorem
Formulation 1
Let $C$ be a curve expressed as the locus of an equation $\map f {x, y} = 0$.
The parametric equations for the evolute of $C$ can be expressed as:
- $\begin{cases} X = x - \dfrac {y' \paren {1 + y'^2} } {y' '} \\ Y = y + \dfrac {1 + y'^2} {y''} \end{cases}$
where:
- $\tuple {x, y}$ denotes the Cartesian coordinates of a general point on $C$
- $\tuple {X, Y}$ denotes the Cartesian coordinates of a general point on the evolute of $C$
- $y'$ and $y' '$ denote the derivative and second derivative respectively of $y$ with respect to $x$.
Formulation 2
Let $C$ be a curve expressed as the locus of an equation $\map f {x, y} = 0$.
The parametric equations for the evolute of $C$ can be expressed as:
- $\begin {cases} X = x - \dfrac {y' \paren {x'^2 + y'^2} } {x' y'' - y' x''} \\ Y = y + \dfrac {x' \paren {x'^2 + y'^2} } {x' y'' - y' x''} \end {cases}$
where:
- $\tuple {x, y}$ denotes the Cartesian coordinates of a general point on $C$
- $\tuple {X, Y}$ denotes the Cartesian coordinates of a general point on the evolute of $C$
- $x'$ and $x' '$ denote the derivative and second derivative respectively of $x$ with respect to $t$
- $y'$ and $y' '$ denote the derivative and second derivative respectively of $y$ with respect to $t$.