Parametric Equations for Evolute/Formulation 2
Jump to navigation
Jump to search
Theorem
Let $C$ be a curve expressed as the locus of an equation $\map f {x, y} = 0$.
The parametric equations for the evolute of $C$ can be expressed as:
- $\begin {cases} X = x - \dfrac {y' \paren {x'^2 + y'^2} } {x' y'' - y' x''} \\ Y = y + \dfrac {x' \paren {x'^2 + y'^2} } {x' y'' - y' x''} \end {cases}$
where:
- $\tuple {x, y}$ denotes the Cartesian coordinates of a general point on $C$
- $\tuple {X, Y}$ denotes the Cartesian coordinates of a general point on the evolute of $C$
- $x'$ and $x' '$ denote the derivative and second derivative respectively of $x$ with respect to $t$
- $y'$ and $y' '$ denote the derivative and second derivative respectively of $y$ with respect to $t$.
Proof
Let $P = \tuple {x, y}$ be a general point on $C$.
Let $Q = \tuple {X, Y}$ be the center of curvature of $C$ at $P$.
From the above diagram:
\(\ds x - X\) | \(=\) | \(\ds \pm \rho \sin \psi\) | ||||||||||||
\(\ds Y - y\) | \(=\) | \(\ds \pm \rho \cos \psi\) |
where:
- $\rho$ is the radius of curvature of $C$ at $P$
- $\psi$ is the angle between the tangent to $C$ at $P$ and the $x$-axis.
Whether the sign is plus or minus depends on whether the curve is convex or concave.
By definition of radius of curvature:
- $(1): \quad \begin {cases} x - X = \dfrac 1 k \sin \psi \\ Y - y = \dfrac 1 k \cos \psi \end {cases}$
where $k$ is the curvature of $C$ at $P$, given by:
- $k = \dfrac {x' y' ' - y' x' '} {\paren {x'^2 + y'^2}^{3/2} }$
We have that:
\(\ds \sin \psi\) | \(=\) | \(\ds \dfrac {\d y} {\d s} = \dfrac {y'} {\sqrt {x'^2 + y'^2} }\) | ||||||||||||
\(\ds \cos \psi\) | \(=\) | \(\ds \dfrac {\d x} {\d s} = \dfrac {x'} {\sqrt {x'^2 + y'^2} }\) |
Substituting for $k$ and $\psi$ in $(1)$ gives:
\(\ds x - X\) | \(=\) | \(\ds \dfrac {\paren {x'^2 + y'^2}^{3/2} } {x' y' ' - y' x' '} \dfrac {y'} {\sqrt {x'^2 + y'^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {y' \paren {x'^2 + y'^2} } {x' y' ' - y' x' '}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds X\) | \(=\) | \(\ds x - \dfrac {y' \paren {x'^2 + y'^2} } {x' y' ' - y' x' '}\) |
and:
\(\ds Y - y\) | \(=\) | \(\ds \dfrac {\paren {x'^2 + y'^2}^{3/2} } {x' y' ' - y' x' '} \dfrac {x'} {\sqrt {x'^2 + y'^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {x' \paren {x'^2 + y'^2} } {x' y' ' - y' x' '}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds Y\) | \(=\) | \(\ds y + \dfrac {x' \paren {x'^2 + y'^2} } {x' y' ' - y' x' '}\) |
$\blacksquare$
Sources
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.23$: Evolutes and Involutes. The Evolute of a Cycloid