Partial Derivative/Examples/u - v + 2 w, 2 u + v + 2 w, u - v + w

From ProofWiki
Jump to navigation Jump to search

Theorem

Let:

\(\ds u - v + 2 w\) \(=\) \(\ds x + 2 z\)
\(\ds 2 u + v - 2 w\) \(=\) \(\ds 2 x - 2 z\)
\(\ds u - v + w\) \(=\) \(\ds z - y\)

Then:

\(\ds \dfrac {\partial u} {\partial y}\) \(=\) \(\ds 0\)
\(\ds \dfrac {\partial v} {\partial y}\) \(=\) \(\ds 2\)
\(\ds \dfrac {\partial w} {\partial y}\) \(=\) \(\ds 1\)


Proof

Partial differentiation with respect to $y$ gives:

\(\ds \dfrac {\partial u} {\partial y} - \dfrac {\partial v} {\partial y} + 2 \dfrac {\partial w} {\partial y}\) \(=\) \(\ds 0\)
\(\ds 2 \dfrac {\partial u} {\partial y} + \dfrac {\partial v} {\partial y} - 2 \dfrac {\partial w} {\partial y}\) \(=\) \(\ds 0\)
\(\ds \dfrac {\partial u} {\partial y} - \dfrac {\partial v} {\partial y} + \dfrac {\partial w} {\partial y}\) \(=\) \(\ds -1\)

which can be expressed in matrix form as:

$\begin {pmatrix} 1 & -1 & 2 \\ 2 & 1 & -2 \\ 1 & -1 & 1 \end {pmatrix} \begin {pmatrix} \dfrac {\partial u} {\partial y} \\ \dfrac {\partial v} {\partial y} \\ \dfrac {\partial w} {\partial y} \end {pmatrix} = \begin {pmatrix} 0 \\ 0 \\ -1 \end {pmatrix}$


Solving by Cramer's Rule:



\(\ds \) \(\) \(\ds \paren {\begin {array} {ccc {{|}} c} 1 & -1 & 2 & 0 \\ 2 & 1 & -2 & 0 \\ 1 & -1 & 1 & -1 \end {array} }\)
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\ds \paren {\begin {array} {ccc {{|}} c} 1 & -1 & 2 & 0 \\ 0 & 3 & -6 & 0 \\ 0 & 0 & -1 & -1 \end {array} }\) $\text r 2 \to \text r 2 - 2 \text r 1$, $\text r 3 \to \text r 3 - \text r 1$
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\ds \paren {\begin {array} {ccc {{|}} c} 1 & -1 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & 1 \end {array} }\) $\text r 2 \to \text r 2 / 3$, $\text r 3 \to -\text r 3$
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\ds \paren {\begin {array} {ccc {{|}} c} 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & 1 \end {array} }\) $\text r 1 \to \text r 1 - \text r 2$
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\ds \paren {\begin {array} {ccc {{|}} c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end {array} }\) $\text r 2 \to \text r 2 + 2 \text r 3$


The solution can be read directly:

\(\ds \dfrac {\partial u} {\partial y}\) \(=\) \(\ds 0\)
\(\ds \dfrac {\partial v} {\partial y}\) \(=\) \(\ds 2\)
\(\ds \dfrac {\partial w} {\partial y}\) \(=\) \(\ds 1\)

$\blacksquare$


Sources