Partial Derivatives of x tan^-1 (x^2 + y)

From ProofWiki
Jump to navigation Jump to search

Theorem

Let:

$\map f {x, y} = x \map \arctan {x^2 + y}$

Then:

\(\ds \map {f_1} {1, 0}\) \(=\) \(\ds \dfrac \pi 4 + 1\)
\(\ds \map {f_2} {x, y}\) \(=\) \(\ds \dfrac x {1 + \paren {x^2 + y}^2}\)


Proof

\(\ds \map {f_1} {x, y}\) \(=\) \(\ds \map {\dfrac \partial {\partial x} } {x \map \arctan {x^2 + y} }\) Definition of Partial Derivative
\(\ds \) \(=\) \(\ds \map \arctan {x^2 + y} \map {\dfrac \partial {\partial x} } x + x \map {\dfrac \partial {\partial x} } {\map \arctan {x^2 + y} }\) Product Rule for Derivatives
\(\ds \) \(=\) \(\ds \map \arctan {x^2 + y} + x \cdot \dfrac 1 {1 + \paren {x^2 + y}^2} \cdot 2 x\) Product Rule for Derivatives, Derivative of Arctangent Function, Chain Rule for Derivatives
\(\ds \) \(=\) \(\ds \map \arctan {x^2 + y} + \dfrac {2 x^2} {1 + \paren {x^2 + y}^2}\) simplifying
\(\ds \leadsto \ \ \) \(\ds \map {f_1} {1, 0}\) \(=\) \(\ds \map \arctan {1^2 + 0} + \dfrac {2 \times 1^2} {1 + \paren {1^2 + 0}^2}\) substituting $x = 1$ and $y = 0$
\(\ds \) \(=\) \(\ds \map \arctan 1 + \dfrac 2 2\) simplifying
\(\ds \) \(=\) \(\ds \dfrac \pi 4 + 1\) Tangent of $45 \degrees$

$\Box$


\(\ds \map {f_2} {x, y}\) \(=\) \(\ds \map {\dfrac \partial {\partial y} } {x \map \arctan {x^2 + y} }\) Definition of Partial Derivative
\(\ds \) \(=\) \(\ds x \dfrac 1 {1 + \paren {x^2 + y}^2} \cdot 1\) Derivative of Identity Function, Derivative of Arctangent Function, Chain Rule for Derivatives
\(\ds \) \(=\) \(\ds \dfrac x {1 + \paren {x^2 + y}^2}\) simplifying

$\blacksquare$


Sources