Derivative of Arctangent Function
Jump to navigation
Jump to search
Theorem
Let $x \in \R$.
Let $\arctan x$ be the arctangent of $x$.
Then:
- $\dfrac {\map \d {\arctan x} } {\d x} = \dfrac 1 {1 + x^2}$
Corollary
- $\map {\dfrac \d {\d x} } {\map \arctan {\dfrac x a} } = \dfrac a {a^2 + x^2}$
Proof 1
\(\ds y\) | \(=\) | \(\ds \arctan x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \tan y\) | Definition of Real Arctangent | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d x} {\d y}\) | \(=\) | \(\ds \sec^2 y\) | Derivative of Tangent Function | ||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \tan^2 y\) | Difference of Squares of Secant and Tangent | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + x^2\) | Definition of $x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d y} {\d x}\) | \(=\) | \(\ds \frac 1 {1 + x^2}\) | Derivative of Inverse Function |
$\blacksquare$
Proof 2
\(\ds \frac {\map \d {\arctan x} } {\d x}\) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map \arctan {x + h} - \arctan x} h\) | Definition of Derivative of Real Function at Point | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map \arctan {x + h} + \map \arctan {-x} } h\) | Arctangent Function is Odd | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac 1 h \map \arctan {\frac {x + h - x} {1 + x \paren {x + h} } }\) | Sum of Arctangents | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac 1 h \map \arctan {\frac h {1 + x^2 + h x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac 1 h \paren {\frac h {1 + x^2 + h x} - \frac 1 3 \paren {\frac h {1 + x^2 + h x} }^3 + \frac 1 5 \paren {\frac h {1 + x^2 + h x} }^5 + \map \OO {h^7} }\) | Definition of Real Arctangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \paren {\frac 1 {1 + x^2 + h x} - \frac {h^2} {3 \paren {1 + x^2 + h x}^3} + \frac {h^4} {5 \paren {1 + x^2 + h x}^5} + \map \OO {h^6} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {1 + x^2 + 0 x} - \frac {0^2} {3 \paren {1 + x^2 + 0 x}^3} + \frac {0^4} {5 \paren {1 + x^2 + 0 x}^5}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {1 + x^2}\) |
$\blacksquare$
Also presented as
The derivative of the arctangent function can also be presented in the form:
- $\dfrac {\map \d {\arctan x} } {\d x} = \dfrac 1 {x^2 + 1}$
Also see
- Derivative of Arcsine Function
- Derivative of Arccosine Function
- Derivative of Arccotangent Function
- Derivative of Arcsecant Function
- Derivative of Arccosecant Function
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $5$. Differential Calculus: Appendix: Derivatives of fundamental functions: $4.$ Inverse trigonometric functions
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 16.5 \ (4)$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): arc-tangent
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions: Inverse trigonometric functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): inverse trigonometric function
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $6$: Derivatives
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $7$: Derivatives