Particular Values of Chebyshev Polynomials of the Second Kind/-1
Jump to navigation
Jump to search
Theorem
Let $\map {U_n} x$ denote the Chebyshev polynomial of the second kind of order $n$.
Then:
- $\map {U_n} {-1} = \paren {-1}^n \paren {n + 1}$
Proof
\(\ds \map {U_n} {-x}\) | \(=\) | \(\ds \paren {-1}^n \map {U_n} x\) | Particular Values of Chebyshev Polynomials of the Second Kind: $-x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map {U_n} {-1}\) | \(=\) | \(\ds \paren {-1}^n \map {U_n} 1\) | setting $x = 1$ | ||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-1}^n \paren {n + 1}\) | Particular Values of Chebyshev Polynomials of the Second Kind: $1$ |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 30$: Chebyshev Polynomials: Special Values: $30.34$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 31$: Chebyshev Polynomials: Special Values: $31.34.$