Particular Values of Chebyshev Polynomials of the Second Kind/-1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map {U_n} x$ denote the Chebyshev polynomial of the second kind of order $n$.

Then:

$\map {U_n} {-1} = \paren {-1}^n \paren {n + 1}$


Proof

\(\ds \map {U_n} {-x}\) \(=\) \(\ds \paren {-1}^n \map {U_n} x\) Particular Values of Chebyshev Polynomials of the Second Kind: $-x$
\(\ds \leadsto \ \ \) \(\ds \map {U_n} {-1}\) \(=\) \(\ds \paren {-1}^n \map {U_n} 1\) setting $x = 1$
\(\ds \) \(=\) \(\ds \paren {-1}^n \paren {n + 1}\) Particular Values of Chebyshev Polynomials of the Second Kind: $1$

$\blacksquare$


Sources