Period of Complex Exponential Function
Jump to navigation
Jump to search
Theorem
Let $z \in \C$, and let $k \in \Z$.
Then:
- $\map \exp {z + 2 k \pi i} = \map \exp z$
Proof
\(\ds \map \exp {z + 2 k \pi i}\) | \(=\) | \(\ds \map \exp z \, \map \exp {2 k \pi i}\) | Exponential of Sum: Complex Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \exp z \times 1\) | Euler's Formula Example: $e^{2 k i \pi}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \exp z\) |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 2$. Geometrical Representations: $(2.21)$
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.5$. The Functions $e^z$, $\cos z$, $\sin z$: $\text{(ii)}$
- 2001: Christian Berg: Kompleks funktionsteori: $\S 1.5$