Positive Linear Functional on C*-Algebra induces Semi-Inner Product
Jump to navigation
Jump to search
Theorem
Let $\struct {A, \ast, \norm {\, \cdot \,} }$ be a $\text C^\ast$-algebra.
Let $f : A \to \C$ be a positive linear functional.
Define $\innerprod \cdot \cdot : A^2 \to A$ by:
- $\innerprod x y = \map f {y^\ast x}$
for each $x, y \in A$.
Then $\innerprod \cdot \cdot$ is a semi-inner product on $A$.
Corollary
Let $\struct {A, \ast, \norm {\, \cdot \,} }$ be a $\text C^\ast$-algebra.
Let $f : A \to \C$ be a positive linear functional.
Let $x, y \in A$.
Then:
- $\cmod {\map f {y^\ast x} }^2 \le \map f {y^\ast y} \map f {x^\ast x}$
Proof
Proof of Conjugate Symmetry
Let $x, y \in A$ we have:
\(\ds \overline {\innerprod x y}\) | \(=\) | \(\ds \overline {\map f {y^\ast x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f {\paren {y^\ast x}^\ast}\) | Positive Linear Functional on C*-Algebra preserves Star | |||||||||||
\(\ds \) | \(=\) | \(\ds \map f {x^\ast y}\) | $(\text C^\ast 4)$ and $(\text C^\ast 1)$ in Definition of Involution on Algebra | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod y x\) |
$\Box$
Proof of linearity
Let $x, y, z \in A$ and $\alpha \in \C$.
Then we have:
\(\ds \innerprod {x + \alpha y} z\) | \(=\) | \(\ds \map f {z^\ast \paren {x + \alpha y} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f {z^\ast x + \alpha z^\ast y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f {z^\ast x} + \alpha \map f {z^\ast y}\) | from the linearity of $f$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod x z + \alpha \innerprod y z\) |
$\Box$
Proof of non-negative definiteness
Let $x \in A$.
Then we have:
- $\innerprod x x = \map f {x^\ast x}$
From Product of Element of C*-Algebra with its Star is Positive, $x^\ast x$ is positive.
So $\map f {x^\ast x} \in \R_{\ge 0}$.
Hence $\innerprod x x \in \R_{\ge 0}$.
$\blacksquare$
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next) $\text {VIII}.5.11$