Power Series Expansion for Chebyshev Polynomial of the Second Kind
Jump to navigation
Jump to search
Theorem
The $n$th Chebyshev polynomial of the second kind can be expressed as a power series expansion in the form:
\(\ds \map {U_n} x\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \dbinom {n + 1} {2 k + 1} x^{n - 2 k} \paren {1 - x^2}^k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dbinom {n + 1} 1 x^n - \dbinom {n + 1} 3 x^{n - 2} \paren {1 - x^2} + \dbinom {n + 1} 5 x^{n - 4} \paren {1 - x^2}^2 - \dbinom {n + 1} 7 x^{n - 6} \paren {1 - x^2}^3 + \cdots\) |
where $n \in \N$.
Proof
From the Definition of Chebyshev Polynomial of the Second Kind, we have:
- $\map {U_n} {\cos \theta} \sin \theta = \map \sin {\paren {n + 1} \theta}$
From De Moivre's Formula, we have:
- $\map \cos {\paren {n + 1} \theta} + i \map \sin {\paren {n + 1} \theta} = \paren {\cos \theta + i \sin \theta}^{n + 1}$
As $n \in \Z_{>0}$, we use the Binomial Theorem on the right hand side, resulting in:
- $\ds \map \cos {\paren {n + 1} \theta} + i \map \sin {\paren {n + 1} \theta} = \sum_{k \mathop \ge 0} \binom {n + 1} k \paren {\cos^{n + 1 - k} \theta} \paren {i \sin \theta}^k$
When $k$ is odd, the expression being summed is imaginary.
Equating the imaginary parts of both sides of the equation, replacing $k$ with $2 k + 1$ to make $k$ odd, gives:
\(\ds \map \sin {\paren {n + 1} \theta}\) | \(=\) | \(\ds \sum_{k \mathop \ge 0} \paren {-1}^k \dbinom {n + 1} {2 k + 1} \paren {\cos^{n + 1 - \paren {2 k + 1} } \theta} \paren {\sin^{2 k + 1} \theta}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sin \theta \sum_{k \mathop \ge 0} \paren {-1}^k \dbinom {n + 1} {2 k + 1} \paren {\cos^{n - \paren {2 k} } \theta} \paren {\sin^2 \theta}^k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sin \theta \sum_{k \mathop \ge 0} \paren {-1}^k \dbinom {n + 1} {2 k + 1} \paren {\cos^{n - \paren {2 k} } \theta} \paren {1 - \cos^2 \theta}^k\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \sin \theta \sum_{k \mathop = 0}^\infty \paren {-1}^k \dbinom {n + 1} {2 k + 1} x^{n - 2 k} \paren {1 - x^2}^k\) | $\cos \theta \to x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map {U_n} x\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \dbinom {n + 1} {2 k + 1} x^{n - 2 k} \paren {1 - x^2}^k\) |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 30$: Chebyshev Polynomials: Chebyshev Polynomials of the Second Kind: $30.22$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 31$: Chebyshev Polynomials: Chebyshev Polynomials of the Second Kind: $31.22.$