Power Series Expansion for Sine Integral Function
Jump to navigation
Jump to search
Theorem
\(\ds \map \Si x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n + 1} } {\paren {2 n + 1} \times \paren {2 n + 1}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac x {1 \cdot 1!} - \dfrac {x^3} {3 \cdot 3!} + \dfrac {x^5} {5 \cdot 5!} - \dfrac {x^7} {7 \cdot 7!} + \cdots\) |
where:
- $\Si$ denotes the sine integral function
- $x$ is a real number.
Proof
\(\ds \map \Si x\) | \(=\) | \(\ds \int_0^x \frac {\sin u} u \rd u\) | Definition of Sine Integral Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^x \frac {\paren {-1}^n} u \paren {\sum_{n \mathop = 0}^\infty \frac {u^{2 n + 1} } {\paren {2 n + 1}!} } \rd u\) | Power Series Expansion for Sine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \paren {\int_0^x \frac {u^{2 n} } {\paren {2 n + 1}!} \rd u}\) | Power Series is Termwise Integrable within Radius of Convergence | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n + 1} } {\paren {2 n + 1} \times \paren {2 n + 1}!}\) | Primitive of Power |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Miscellaneous Special Functions: Sine Integral $\ds \map {Si} x = \int_0^x \frac {\sin u} u \rd u$: $35.11$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 36$: Miscellaneous and Riemann Zeta Functions: Sine Integral $\ds \map \Si x = \int_0^x \frac {\sin u} u \rd u$: $36.11.$