Asymptotic Expansion for Sine Integral Function
Jump to navigation
Jump to search
Theorem
\(\ds \map \Si x\) | \(\sim\) | \(\ds \frac \pi 2 - \frac {\sin x} x \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {\paren {2 n + 1}!} {x^{2 n + 1} } - \frac {\cos x} x \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {\paren {2 n}!} {x^{2 n} }\) | ||||||||||||
\(\ds \) | \(\sim\) | \(\ds \frac \pi 2 - \frac {\sin x} x \paren {\dfrac 1 x - \dfrac {3!} {x^3} + \dfrac {5!} {x^5} - \cdots} - \frac {\cos x} x \paren {1 - \dfrac {2!} {x^2} + \dfrac {4!} {x^4} - \cdots}\) |
where:
- $\Si$ denotes the sine integral function
- $\sim$ denotes asymptotic equivalence as $x \to \infty$.
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Miscellaneous Special Functions: Sine Integral $\ds \map {Si} x = \int_0^x \frac {\sin u} u \rd u$: $35.12$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 36$: Miscellaneous and Riemann Zeta Functions: Sine Integral $\ds \map \Si x = \int_0^x \frac {\sin u} u \rd u$: $36.12.$