Power of 2^10 Minus Power of 10^3 is Divisible by 24/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{\ge 0}$ be a non-negative integer.

Then $2^{10 n} - 10^{3 n}$ is divisible by $24$.


That is:

$2^{10 n} - 10^{3 n} \equiv 0 \pmod {24}$


Proof

\(\ds 2^{10 n}\) \(=\) \(\ds \paren {2^{10} }^n\) Power of Power
\(\ds \) \(=\) \(\ds 1024^n\) as $2^{10} = 1024$
\(\ds \) \(=\) \(\ds \paren {1000 + 24}^n\) rewriting $1024$ as the sum of a power of $10$ and some integer
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^n 1000^{n - k} \, 24^k\) Binomial Theorem
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds 1000^n + \sum_{k \mathop = 1}^n 1000^{n - k} \, 24^k\) extracting first term from summation
\(\ds \) \(=\) \(\ds 1000^n + 24 \paren {\sum_{k \mathop = 1}^n 1000^{n - k} \, 24^{k - 1} }\) extracting $24$ as a divisor
\(\ds \leadsto \ \ \) \(\ds 2^{10 n} - 1000^x\) \(=\) \(\ds 24 i\) setting $i = \ds \sum_{k \mathop = 1}^n 1000^{n - k} \, 24^{k - 1}$
\(\ds \leadsto \ \ \) \(\ds 2^{10 n} - 10^{3 n}\) \(=\) \(\ds 24 i\) rewriting $1000^n$ as a power of $10$
\(\ds \leadsto \ \ \) \(\ds 2^{10 n} - 10^{3 n}\) \(\equiv\) \(\ds 0 \pmod {24}\) Definition of Congruence Modulo Integer

$\blacksquare$