Primitive of Cube of Hyperbolic Cosecant of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int \csch^3 a x \rd x = \frac {-\csch a x \coth a x} {2 a} - \frac 1 {2 a} \ln \size {\tanh a x} + C$
Proof
\(\ds \int \csch^3 x \rd x\) | \(=\) | \(\ds \frac {\csch a x \coth a x} {2 a} - \frac 1 2 \int \csch a x \rd x\) | Primitive of $\csch^n a x$ where $n = 3$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\csch a x \coth a x} {2 a} - \ln \size {\tanh a x} + C\) | Primitive of $\csch a x$ |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\csch a x$: $14.638$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(33)$ Integrals Involving $\csch a x$: $17.33.3.$