Primitive of Function of Arcsine
Jump to navigation
Jump to search
Theorem
- $\ds \int \map F {\arcsin \frac x a} \rd x = a \int \map F u \cos u \rd u$
where $u = \arcsin \dfrac x a$.
Proof
First note that:
\(\ds u\) | \(=\) | \(\ds \arcsin \frac x a\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds a \sin u\) | Definition of Real Arcsine |
Then:
\(\ds u\) | \(=\) | \(\ds \arcsin \frac x a\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac 1 {\sqrt {a^2 - x^2} }\) | Derivative of Arcsine Function: Corollary | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \map F {\arcsin \frac x a} \rd x\) | \(=\) | \(\ds \int \map F u \sqrt {a^2 - x^2} \rd u\) | Primitive of Composite Function | ||||||||||
\(\ds \) | \(=\) | \(\ds \int \map F u \sqrt {a^2 - a^2 \sin^2 u} \rd u\) | Definition of $x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \map F u a \sqrt {1 - \sin^2 u} \rd u\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \map F u a \cos u \rd u\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds a \int \map F u \cos u \rd u\) | Primitive of Constant Multiple of Function |
$\blacksquare$
Also see
- Primitive of Function of Arccosine
- Primitive of Function of Arctangent
- Primitive of Function of Arccotangent
- Primitive of Function of Arcsecant
- Primitive of Function of Arccosecant
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Important Transformations: $14.57$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 16$: Indefinite Integrals: Important Transformations: $16.57.$