Primitive of Reciprocal of Square of Hyperbolic Cosine of a x plus 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\paren {\cosh a x + 1}^2} = \frac 1 {2 a} \tanh \frac {a x} 2 - \frac 1 {6 a} \tanh^3 \frac {a x} 2 + C$


Proof

\(\ds \int \frac {\d x} {\paren {\cosh a x + 1}^2}\) \(=\) \(\ds \int \paren {\frac 1 2 \sech^2 \frac {a x} 2}^2 \rd x\) Reciprocal of Hyperbolic Cosine Plus One
\(\ds \) \(=\) \(\ds \frac 1 4 \int \sech^4 \frac {a x} 2 \rd x\) simplifying
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {\frac{\sech^2 \dfrac {a x} 2 \tanh \dfrac {a x} 2} {\dfrac {3 a} 2} + \frac 2 3 \int \sech^2 \frac {a x} 2 \rd x} + C\) Primitive of $\sech^n a x$
\(\ds \) \(=\) \(\ds \frac 1 {6 a} \sech^2 \frac {a x} 2 \tanh \dfrac {a x} 2 + \frac 1 6 \int \sech^2 \frac {a x} 2 \rd x + C\) simplifying
\(\ds \) \(=\) \(\ds \frac 1 {6 a} \sech^2 \frac {a x} 2 \tanh \dfrac {a x} 2 + \frac 1 6 \paren {\frac 2 a \tanh \frac {a x} 2} + C\) Primitive of $\sech^2 a x$
\(\ds \) \(=\) \(\ds \frac 1 {6 a} \paren {1 - \tanh^2 \frac {a x} 2} \tan \dfrac {a x} 2 + \frac 2 {6 a} \tanh \frac {a x} 2 + C\) Sum of Squares of Hyperbolic Secant and Tangent
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \tanh \frac {a x} 2 - \frac 1 {6 a} \tanh^3 \frac {a x} 2 + C\) simplifying

$\blacksquare$


Also see


Sources