Primitive of Power of Hyperbolic Secant of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int \sech^n a x \rd x = \frac {\sech^{n - 2} a x \tanh a x} {a \paren {n - 1} } + \frac {n - 2} {n - 1} \int \sech^{n - 2} a x \rd x + C$
for $n \ne -1$.
Proof
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \sech^{n - 2} a x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds -a \paren {n - 2} \sech^{n - 3} a x \sech a x \tanh a x\) | Derivative of Power, Derivative of $\sech a x$, Chain Rule for Derivatives | ||||||||||
\(\ds \) | \(=\) | \(\ds -a \paren {n - 2} \sech^{n - 2} a x \tanh a x\) |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds \sech^2 a x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \frac {\tanh a x} a\) | Primitive of $\sech^2 a x$ |
Then:
\(\ds \int \sech^n a x \rd x\) | \(=\) | \(\ds \int \sech^{n - 2} a x \sech^2 a x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sech^{n - 2} a x \paren {\frac {\tanh a x} a}\) | Integration by Parts | |||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \int \paren {\frac {\tanh a x} a} \paren {-a \paren {n - 2} \sech^{n - 2} a x \tanh a x} \rd x\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sech^{n - 2} a x \tanh a x} a + \paren {n - 2} \int \tanh^2 a x \sech^{n - 2} a x \rd x\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sech^{n - 2} a x \tanh a x} a + \paren {n - 2} \int \paren {1 - \sech^2 a x} \sech^{n - 2} a x \rd x\) | Sum of $\sech^2$ and $\tanh^2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sech^{n - 2} a x \tanh a x} a - \paren {n - 2} \int \sech^n a x \rd x\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {n - 2} \int \sech^{n - 2} a x \rd x\) | |||||||||||
\(\ds \paren {n - 1} \int \sech^n a x \rd x\) | \(=\) | \(\ds \frac {\sech^{n - 2} a x \tanh a x} a + \paren {n - 2} \int \sech^{n - 2} a x \rd x\) | gathering terms | |||||||||||
\(\ds \int \sech^n a x \rd x\) | \(=\) | \(\ds \frac {\sech^{n - 2} a x \tanh a x} {a \paren {n - 1} } + \frac {n - 2} {n - 1} \int \sech^{n - 2} a x \rd x\) | dividing by $n - 1$ |
$\blacksquare$
Also see
- Primitive of $\sinh^n a x$
- Primitive of $\cosh^n a x$
- Primitive of $\tanh^n a x$
- Primitive of $\coth^n a x$
- Primitive of $\csch^n a x$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sech a x$: $14.635$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Back endpapers: A Brief Table of Integrals: $133$.
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(32)$ Integrals Involving $\sech a x$: $17.32.7.$