Primitive of Logarithm of x
Jump to navigation
Jump to search
Theorem
- $\ds \int \ln x \rd x = x \ln x - x + C$
Corollary
- $\ds \int \map \ln {1 - x} \rd x = \paren {x - 1} \map \ln {1 - x} - x + C$
Proof 1
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \ln x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac 1 x\) | Derivative of $\ln x$ |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds x\) | Primitive of Constant |
Then:
\(\ds \int \ln x \rd x\) | \(=\) | \(\ds x \ln x - \int x \paren {\frac 1 x} \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds x \ln x - \int \rd x + C\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds x \ln x - x + C\) | Primitive of Constant |
$\blacksquare$
Proof 2
Note that we have:
\(\ds \int_0^1 \ln x \rd x\) | \(=\) | \(\ds \int_0^1 x^0 \paren {\ln x}^1 \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {-1}^1 \map \Gamma 2} {1^2}\) | Definite Integral from $0$ to $1$ of $x^m \paren {\ln x}^n$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -1\) | Gamma Function Extends Factorial |
We therefore have:
\(\ds -1\) | \(=\) | \(\ds \int_0^1 \ln x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int_0^a \map \ln {\frac u a} \rd u\) | substituting $x = \dfrac u a$ where $a > 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int_0^a \paren {\ln u - \ln a} \rd u\) | Difference of Logarithms | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int_0^a \ln u \rd u - \ln a\) | Primitive of Constant, Fundamental Theorem of Calculus |
giving:
- $\ds \frac 1 a \int_0^a \ln u \rd u = \ln a - 1$
so:
- $\ds \int_0^a \ln u \rd u = a \ln a - a$
for all real $a > 0$.
By Fundamental Theorem of Calculus: First Part, we have that:
- $x \ln x - x$ is a primitive of $\ln x$ on $x > 0$.
We therefore conclude that, by Primitives which Differ by Constant:
- $\ds \int \ln x \rd x = x \ln x - x + C$
for $x > 0$.
$\blacksquare$
Also presented as
Some sources present this result as:
- $\ds \int \ln x \rd x = x \paren {\ln x - 1} + C$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\ln x$: $14.525$
- 1971: Wilfred Kaplan and Donald J. Lewis: Calculus and Linear Algebra ... (previous) ... (next): Appendix $\text I$: Table of Indefinite Integrals $10$.
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $6$. Integral Calculus: Appendix: Table of Fundamental Standard Integrals
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(26)$ Integrals Involving $\ln x$: $17.26.1.$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $7$: Integrals
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $8$: Integrals