Primitive of Square of Hyperbolic Sine Function/Corollary
Jump to navigation
Jump to search
Corollary to Primitive of Square of Hyperbolic Sine Function
- $\ds \int \sinh^2 x \rd x = \frac {\sinh x \cosh x - x} 2 + C$
where $C$ is an arbitrary constant.
Proof
\(\ds \int \sinh^2 x \rd x\) | \(=\) | \(\ds \frac {\sinh 2 x} 4 - \frac x 2 + C\) | Primitive of Square of Hyperbolic Sine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 \sinh x \cosh x} 4 - \frac x 2 + C\) | Double Angle Formula for Hyperbolic Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sinh x \cosh x - x} 2 + C\) | rearranging |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: General Rules of Integration: $14.35$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 16$: Indefinite Integrals: General Rules of Integration: $16.35.$