Primitive of x by Arccosecant of x over a
Jump to navigation
Jump to search
Theorem
- $\ds \int x \arccsc \frac x a \rd x = \begin{cases} \dfrac {x^2} 2 \arccsc \dfrac x a + \dfrac {a \sqrt {x^2 - a^2} } 2 + C & : 0 < \arccsc \dfrac x a < \dfrac \pi 2 \\ \dfrac {x^2} 2 \arccsc \dfrac x a - \dfrac {a \sqrt {x^2 - a^2} } 2 + C & : -\dfrac \pi 2 < \arccsc \dfrac x a < 0 \\ \end{cases}$
Proof
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \arccsc \frac x a\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \begin {cases} \dfrac {-a} {x \sqrt {x^2 - a^2} } & : 0 < \arccsc \dfrac x a < \dfrac \pi 2 \\ \dfrac a {x \sqrt {x^2 - a^2} } & : -\dfrac \pi 2 < \arccsc \dfrac x a < 0 \\ \end {cases}\) | Derivative of $\arccsc \dfrac x a$ |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \frac {x^2} 2\) | Primitive of Power |
First let $\arccsc \dfrac x a$ be in the interval $\openint 0 {\dfrac \pi 2}$.
Then:
\(\ds \int x \arccsc \frac x a \rd x\) | \(=\) | \(\ds \frac {x^2} 2 \arccsc \frac x a - \int \frac {x^2} 2 \paren {\frac {-a} {x \sqrt {x^2 - a^2} } } \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^2} 2 \arccsc \frac x a + \frac a 2 \int \frac {x \rd x} {\sqrt {x^2 - a^2} } + C\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^2} 2 \arccsc \frac x a + \frac a 2 \sqrt {x^2 - a^2} + C\) | Primitive of $\dfrac x {\sqrt {x^2 - a^2} }$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^2} 2 \arccsc \frac x a + \frac {a \sqrt{x^2 - a^2} } 2 + C\) | simplifying |
Similarly, let $\arccsc \dfrac x a$ be in the interval $\openint {-\dfrac \pi 2} 0$.
Then:
\(\ds \int x \arccsc \frac x a \rd x\) | \(=\) | \(\ds \frac {x^2} 2 \arccsc \frac x a - \int \frac {x^2} 2 \paren {\frac {-a} {x \sqrt {x^2 - a^2} } } \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^2} 2 \arccsc \frac x a - \frac a 2 \int \frac {x \rd x} {\sqrt {x^2 - a^2} } + C\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^2} 2 \arccsc \frac x a - \frac a 2 \sqrt {x^2 - a^2} + C\) | Primitive of $\dfrac x {\sqrt {x^2 - a^2} }$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^2} 2 \arccsc \frac x a - \frac {a \sqrt{x^2 - a^2} } 2 + C\) | simplifying |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving Inverse Trigonometric Functions: $14.499$