Primitive of x by Arcsine of x over a
Jump to navigation
Jump to search
Theorem
- $\ds \int x \arcsin \frac x a \rd x = \paren {\frac {x^2} 2 - \frac {a^2} 4} \arcsin \frac x a + \frac {x \sqrt {a^2 - x^2} } 4 + C$
Proof 1
Let:
\(\ds u\) | \(=\) | \(\ds \arcsin \frac x a\) | ||||||||||||
\(\text {(1)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \sin u\) | \(=\) | \(\ds \frac x a\) | Definition of Real Arcsine | |||||||||
\(\text {(2)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \cos u\) | \(=\) | \(\ds \sqrt {1 - \frac {x^2} {a^2} }\) | Sum of Squares of Sine and Cosine |
Then:
\(\ds \int x \arcsin \frac x a \rd x\) | \(=\) | \(\ds a \int u \paren {a \sin u} \cos u \rd u\) | Primitive of Function of Arcsine | |||||||||||
\(\ds \) | \(=\) | \(\ds a \int a u \frac {\sin 2 u} 2 \rd u\) | Double Angle Formula for Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2} 2 \int u \sin 2 u \rd u\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2} 2 \paren {\frac {\sin 2 u} 4 - \frac {u \cos 2 u} 2} + C\) | Primitive of $x \sin a x$ where $a = 2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2 \sin 2 u} 8 - \frac {a^2 u \cos 2 u} 4 + C\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2 \sin u \cos u} 4 - \frac {a^2 u \cos 2 u} 4 + C\) | Double Angle Formula for Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2 \sin u \cos u} 4 - \frac {a^2 u \paren {\cos^2 u - \sin^2 u} } 4 + C\) | Double Angle Formula for Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2 \sin u \cos u} 4 - \frac {a^2 \arcsin \frac x a \paren {\cos^2 u - \sin^2 u} } 4 + C\) | substituting for $u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2 \frac x a \cos u} 4 - \frac {a^2 \arcsin \frac x a \paren {\cos^2 u - \frac {x^2} {a^2} } } 4 + C\) | substituting for $\sin u$ from $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2 \frac x a \sqrt {1 - \frac {x^2} {a^2} } } 4 - \frac {a^2 \arcsin \frac x a \paren {\paren {1 - \frac {x^2} {a^2} } - \frac {x^2} {a^2} } } 4 + C\) | substituting for $\cos u$ from $(2)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {x^2} 2 - \frac {a^2} 4} \arcsin \frac x a + \frac {x \sqrt {a^2 - x^2} } 4 + C\) | simplifying |
$\blacksquare$
Proof 2
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \arcsin \frac x a\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac 1 {\sqrt {a^2 - x^2} }\) | Derivative of $\arcsin \dfrac x a$ |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \frac {x^2} 2\) | Primitive of Power |
Then:
\(\ds \int x \arcsin \frac x a \rd x\) | \(=\) | \(\ds \frac {x^2} 2 \arcsin \frac x a - \int \frac {x^2} 2 \paren {\frac 1 {\sqrt {a^2 - x^2} } } \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^2} 2 \arcsin \frac x a - \frac 1 2 \int \frac {x^2 \rd x} {\sqrt {a^2 - x^2} } + C\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^2} 2 \arcsin \frac x a - \frac 1 2 \paren {\frac {-x \sqrt {a^2 - x^2} } 2 + \frac {a^2} 2 \arcsin \frac x a} + C\) | Primitive of $\dfrac {x^2} {\sqrt {a^2 - x^2} }$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {x^2} 2 - \frac {a^2} 4} \arcsin \frac x a + \frac {x \sqrt {a^2 - x^2} } 4 + C\) | simplifying |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving Inverse Trigonometric Functions: $14.472$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(24)$ Integrals Involving Inverse Trigonometric Functions: $17.24.2.$