Primitive of x over Root of x squared minus a squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {\sqrt {x^2 - a^2} } = \sqrt {x^2 - a^2} + C$
for $\size x > a$.
Proof
Let:
\(\ds z^2\) | \(=\) | \(\ds x^2 - a^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 z \frac {\d z} {\d x}\) | \(=\) | \(\ds 2 x\) | Chain Rule for Derivatives, Power Rule for Derivatives | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {x \rd x} {\sqrt {x^2 - a^2} }\) | \(=\) | \(\ds \int \frac {z \rd z} z\) | Integration by Substitution | ||||||||||
\(\ds \) | \(=\) | \(\ds \int \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds z + C\) | Primitive of Constant | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {x^2 - a^2} + C\) | substituting for $z$ |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sqrt {x^2 - a^2}$: $14.210$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(10)$ Integrals Involving $\sqrt {x^2 - a^2}$: $17.10.1.$