Primitive of x by Cosine of x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x \cos x \rd x = \cos x + x \sin x + C$

where $C$ is an arbitrary constant.


Proof 1

From Primitive of $x \cos a x$:

$\ds \int x \cos a x \rd x = \frac {\cos a x} {a^2} + \frac {x \sin a x} a + C$

The result follows on setting $a = 1$.

$\blacksquare$


Proof 2

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds 1\) Derivative of Identity Function


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds \cos x\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \sin x\) Primitive of $\cos x$


Then:

\(\ds \int x \cos x \rd x\) \(=\) \(\ds x \sin x - \int \paren {\sin x} \times 1 \rd x + C\) Integration by Parts
\(\ds \) \(=\) \(\ds x \sin x - \int \sin x \rd x + C\) simplifying
\(\ds \) \(=\) \(\ds x \sin x - \paren {-\cos x} + C\) Primitive of $\sin x$
\(\ds \) \(=\) \(\ds \cos x + x \sin x + C\) rearranging

$\blacksquare$


Proof 3

We have:

\(\ds \map {\dfrac \d {\d x} } {\cos x + x \sin x}\) \(=\) \(\ds \map {\dfrac \d {\d x} } {\cos x} + \map {\dfrac \d {\d x} } {x \sin x}\) Sum Rule for Derivatives
\(\ds \) \(=\) \(\ds \map {\dfrac \d {\d x} } {\cos x} + x \map {\dfrac \d {\d x} } {\sin x} + \map {\dfrac \d {\d x} } x \sin x\) Product Rule for Derivatives
\(\ds \) \(=\) \(\ds -\sin x + x \cos x + \sin x\) Derivative of Cosine Function, Derivative of Sine Function, Derivative of Identity Function
\(\ds \) \(=\) \(\ds x \cos x\) simplifying

Hence the result by definition of primitive.

$\blacksquare$


Warning

It is a mistake to use Primitive of Constant Multiple of Function here:

$\ds \int x \cos x \rd x = x \int \cos x \rd x$

and thence to deduce:

$\ds \int x \cos x \rd x = x \sin x + C$

because $x$ is not a constant in the expression $x \cos x$.