Primitive of Cosine Function
Jump to navigation
Jump to search
Theorem
- $\ds \int \cos x \rd x = \sin x + C$
where $C$ is an arbitrary constant.
Corollary
- $\ds \int \cos a x \rd x = \frac {\sin a x} a + C$
Corollary 2
- $\ds \int \map \cos {a x + b} \rd x = \frac {\map \sin {a x + b} } a + C$
Proof 1
From Derivative of Sine Function:
- $\dfrac \d {\d x} \sin x = \cos x$
The result follows from the definition of primitive.
$\blacksquare$
Proof 2
\(\ds \int \cos x \rd x\) | \(=\) | \(\ds \frac 1 2 \int \paren {e^{i x} + e^{-i x} } \rd x\) | Euler's Cosine Identity | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \paren {e^{i x} - e^{-i x} } + C\) | Primitive of Exponential of a x | |||||||||||
\(\ds \) | \(=\) | \(\ds \sin x + C\) | Euler's Sine Identity |
$\blacksquare$
Also see
Sources
- 1945: A. Geary, H.V. Lowry and H.A. Hayden: Advanced Mathematics for Technical Students, Part I ... (previous) ... (next): Chapter $\text {III}$: Integration: Integration
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Integration
- 1960: Margaret M. Gow: A Course in Pure Mathematics ... (previous) ... (next): Chapter $10$: Integration: $10.4$. Standard integrals: Standard Forms: $\text {(v)}$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: General Rules of Integration: $14.12$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Front endpapers: A Brief Table of Integrals: $3$.
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $6$. Integral Calculus: Appendix: Table of Fundamental Standard Integrals
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): cosine
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions: Trigonometric functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $7$: Integrals
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $8$: Integrals