Primitive of x over Power of x squared plus a squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {\paren {x^2 + a^2}^n} = \frac {-1} {2 \paren {n - 1} \paren {x^2 + a^2}^{n - 1} }$
Proof
Let:
\(\ds z\) | \(=\) | \(\ds x^2 + a^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d z} {\d x}\) | \(=\) | \(\ds 2 x\) | Power Rule for Derivatives | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {x \rd x} {\paren {x^2 + a^2}^n}\) | \(=\) | \(\ds \int \frac {\d z} {2 z^n}\) | Integration by Substitution | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int z^{-n} \rd z\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \frac {z^{-n + 1} } {-n + 1} + C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-1} {2 \paren {n - 1} z^{n - 1} } + C\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-1} {2 \paren {n - 1} \paren {x^2 + a^2}^{n - 1} } + C\) | substituting for $z$ |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^2 + a^2$: $14.140$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(6)$ Integrals Involving $x^2 + a^2$: $17.6.16.$