Primitive of Reciprocal of Power of x squared plus a squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {\paren {x^2 + a^2}^n} = \frac x {2 \paren {n - 1} a^2 \paren {x^2 + a^2}^{n - 1} } + \frac {2 n - 3} {\paren {2 n - 2} a^2} \int \frac {\d x} {\paren {x^2 + a^2}^{n - 1} }$
Proof
Aiming for an expression in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
in order to use the technique of Integration by Parts, let:
\(\ds v\) | \(=\) | \(\ds x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds 1\) | Power Rule for Derivatives |
Thus:
\(\ds u\) | \(=\) | \(\ds \frac 1 {\paren {x^2 + a^2}^{n - 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x^2 + a^2}^{-\paren {n - 1} }\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds -2 \paren {n - 1} x \paren {x^2 + a^2}^{-\paren {n - 1} - 1}\) | Power Rule for Derivatives and Chain Rule for Derivatives | ||||||||||
\(\ds \) | \(=\) | \(\ds -2 \paren {n - 1} x \paren {x^2 + a^2}^{-n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-\paren {2 n - 2} x} {\paren {x^2 + a^2}^n}\) |
Then:
\(\ds \int \frac {\d x} {\paren {x^2 + a^2}^{n - 1} }\) | \(=\) | \(\ds \frac 1 {\paren {x^2 + a^2}^{n - 1} } x - \int x \frac {-\paren {2 n - 2} x} {\paren {x^2 + a^2}^n} \rd x\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x {\paren {x^2 + a^2}^{n - 1} } + \paren {2 n - 2} \int \frac {x^2} {\paren {x^2 + a^2}^n} \rd x\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x {\paren {x^2 + a^2}^{n - 1} } + \paren {2 n - 2} \int \frac {x^2 + a^2 - a^2} {\paren {x^2 + a^2}^n} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac x {\paren {x^2 + a^2}^{n - 1} } + \paren {2 n - 2} \int \frac {x^2 + a^2} {\paren {x^2 + a^2}^n} \rd x - \paren {2 n - 2} a^2 \int \frac {\d x} {\paren {x^2 + a^2}^n}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x {\paren {x^2 + a^2}^{n - 1} } + \paren {2 n - 2} \int \frac {\d x} {\paren {x^2 + a^2}^{n - 1} } - \paren {2 n - 2} a^2 \int \frac {\d x} {\paren {x^2 + a^2}^n}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {1 - \paren {2 n - 2} } \int \frac {\d x} {\paren {x^2 + a^2}^{n - 1} }\) | \(=\) | \(\ds \frac x {\paren {x^2 + a^2}^{n - 1} } - \paren {2 n - 2} a^2 \int \frac {\d x} {\paren {x^2 + a^2}^n}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\d x} {\paren {x^2 + a^2}^n}\) | \(=\) | \(\ds \frac x {2 \paren {n - 1} a^2 \paren {x^2 + a^2}^{n - 1} } + \frac {2 n - 3} {\paren {2 n - 2} a^2} \int \frac {\d x} {\paren {x^2 + a^2}^{n - 1} }\) |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^2 + a^2$: $14.139$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(6)$ Integrals Involving $x^2 + a^2$: $17.6.15.$