Primitive of x over Root of a squared minus x squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {\sqrt {a^2 - x^2} } = -\sqrt {a^2 - x^2} + C$
Proof
Let:
\(\ds z^2\) | \(=\) | \(\ds a^2 - x^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 z \frac {\d z} {\d x}\) | \(=\) | \(\ds -2 x\) | Chain Rule for Derivatives, Power Rule for Derivatives | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {x \rd x} {\sqrt {a^2 - x^2} }\) | \(=\) | \(\ds \int -\frac {z \rd z} z\) | Integration by Substitution | ||||||||||
\(\ds \) | \(=\) | \(\ds -\int \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -z + C\) | Primitive of Constant | |||||||||||
\(\ds \) | \(=\) | \(\ds -\sqrt {a^2 - x^2} + C\) | substituting for $z$ |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sqrt {a^2 - x^2}$: $14.238$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(11)$ Integrals Involving $\sqrt {a^2 - x^2}$: $17.11.2.$