Primitive of x over a x + b cubed
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {\paren {a x + b}^3} = \frac {-1} {a^2 \paren {a x + b} } + \frac b {2 a^2 \paren {a x + b}^2} + C$
Proof 1
Put $u = a x + b$.
Then:
\(\ds x\) | \(=\) | \(\ds \frac {u - b} a\) | ||||||||||||
\(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac 1 a\) |
Then:
\(\ds \int \frac {x \rd x} {\paren {a x + b}^3}\) | \(=\) | \(\ds \int \frac 1 a \frac {u - b} {a u^3} \rd u\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2} \int \frac {\d u} {u^2} - \frac b {a^2} \int \frac {\d u} {u^3}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2} \frac {-1} u - \frac b {a^2} \frac {-1} {2 u^2} + C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-1} {a^2 \paren {a x + b} } + \frac b {2 a^2 \paren {a x + b}^2} + C\) | substituting for $u$ and rearranging |
$\blacksquare$
Proof 2
From Primitive of $x$ by Power of $a x + b$:
- $\ds \int x \paren {a x + b}^n \rd x = \frac {\paren {a x + b}^{n + 2} } {\paren {n + 2} a^2} - \frac {b \paren {a x + b}^{n + 1} } {\paren {n + 1} a^2} + C$
where $n \ne - 1$ and $n \ne - 2$.
The result follows by setting $n = -3$.
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $a x + b$: $14.74$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(1)$ Integrals Involving $a x + b$: $17.1.12.$