Primitive of x squared over a x + b cubed
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x^2 \rd x} {\paren {a x + b}^3} = \frac {2 b} {a^3 \paren {a x + b} } - \frac {b^2} {2 a^3 \paren {a x + b}^2} + \frac 1 {a^3} \ln \size {a x + b} + C$
Proof
Put $u = a x + b$.
Then:
\(\ds x\) | \(=\) | \(\ds \frac {u - b} a\) | ||||||||||||
\(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac 1 a\) |
Then:
\(\ds \int \frac {x^2 \rd x} {\paren {a x + b}^3}\) | \(=\) | \(\ds \int \frac 1 a \paren {\frac {u - b} a}^2 \frac 1 {u^2} \rd u\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac 1 {a^3} \paren {\frac 1 u - \frac {2 b} {u^2} + \frac {b^2} {u^3} } \rd u\) | Square of Difference, and simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^3} \int \frac {\d u} u - \frac {2 b} {a^3} \int \frac {\d u} {u^2} + \frac {b^2} {a^3} \int \frac {\d u} {u^3}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^3} \ln \size u - \frac {2 b} {a^3} \int \frac {\d u} {u^2} + \frac {b^2} {a^3} \int \frac {\d u} {u^3} + C\) | Primitive of Reciprocal | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^3} \ln \size u - \frac {2 b} {a^3} \frac {-1} u + \frac {b^2} {a^3} \frac {-1} {2 u^2} + C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 b} {a^3 \paren {a x + b} } - \frac {b^2} {2 a^3 \paren {a x + b}^2} + \frac 1 {a^3} \ln \size {a x + b} + C\) | substituting for $u$ and rearranging |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $a x + b$: $14.75$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(1)$ Integrals Involving $a x + b$: $17.1.13.$