Product of Powers of Positive Element of Unital C*-Algebra
Jump to navigation
Jump to search
Theorem
Let $\struct {A, \ast, \norm {\, \cdot \,} }$ be a unital $\text C^\ast$-algebra.
Let $a \in A$ be positive elements.
Let $\alpha, \beta > 0$ be real numbers.
Let $a^\alpha$, $a^\beta$ and $a^{\alpha + \beta}$ be given by the continuous functional calculus.
Then:
- $a^{\alpha + \beta} = a^\alpha a^\beta$
Proof
Let $\map {\sigma_A} a \subseteq \hointr 0 \infty$ be the spectrum of $a$.
Define $e_\alpha : \map {\sigma_A} a \to \hointr 0 \infty$, $e_\beta : \map {\sigma_A} a \to \hointr 0 \infty$ and $e_{\alpha + \beta} : \map {\sigma_A} a \to \hointr 0 \infty$ by:
- $\map {e_\alpha} t = t^\alpha$
- $\map {e_\beta} t = t^\beta$
- $\map {e_{\alpha + \beta} } t = t^{\alpha + \beta}$
for each $t \in \map {\sigma_A} a$.
For $t \in \map {\sigma_A} a$ we have:
- $\map {e_\alpha} t \map {e_\beta} t = t^\alpha t^\beta = t^{\alpha + \beta} = \map {e_{\alpha + \beta} } t$
Hence since the continuous functional calculus is an algebra homomorphism, we obtain:
- $\map {e_\alpha} a \map {e_\beta} a = \map {e_{\alpha + \beta} } a$
That is:
- $a^\alpha a^\beta = a^{\alpha + \beta}$
$\blacksquare$