Product of Reciprocals of Real Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

$\forall x, y \in \R_{\ne 0}: \dfrac 1 x \times \dfrac 1 y = \dfrac 1 {x \times y}$


Proof

\(\displaystyle \frac 1 {x \times y} \times \paren {x \times y}\) \(=\) \(\displaystyle 1\) Real Number Axioms: $\R M 4$: Inverses
\(\displaystyle \leadsto \ \ \) \(\displaystyle \frac 1 {x \times y} \times \paren {x \times y} \times \frac 1 y\) \(=\) \(\displaystyle 1 \times \frac 1 y\) as $y \ne 0$
\(\displaystyle \leadsto \ \ \) \(\displaystyle \paren {\frac 1 {x \times y} \times x} \times \paren {y \times \frac 1 y}\) \(=\) \(\displaystyle 1 \times \frac 1 y\) Real Number Axioms: $\R M 1$: Associativity
\(\displaystyle \leadsto \ \ \) \(\displaystyle \paren {\frac 1 {x \times y} \times x} \times 1\) \(=\) \(\displaystyle 1 \times \frac 1 y\) Real Number Axioms: $\R M 4$: Inverse
\(\displaystyle \leadsto \ \ \) \(\displaystyle \frac 1 {x \times y} \times x\) \(=\) \(\displaystyle \frac 1 y\) Real Number Axioms: $\R M 3$: Identity
\(\displaystyle \leadsto \ \ \) \(\displaystyle \paren {\frac 1 {x \times y} \times x} \times \frac 1 x\) \(=\) \(\displaystyle \frac 1 y \times \frac 1 x\) as $x \ne 0$
\(\displaystyle \leadsto \ \ \) \(\displaystyle \frac 1 {x \times y} \times \paren {x \times \frac 1 x}\) \(=\) \(\displaystyle \frac 1 y \times \frac 1 x\) Real Number Axioms: $\R M 1$: Associativity
\(\displaystyle \leadsto \ \ \) \(\displaystyle \frac 1 {x \times y} \times 1\) \(=\) \(\displaystyle \frac 1 y \times \frac 1 x\) Real Number Axioms: $\R M 4$: Inverse
\(\displaystyle \leadsto \ \ \) \(\displaystyle \frac 1 {x \times y}\) \(=\) \(\displaystyle \frac 1 y \times \frac 1 x\) Real Number Axioms: $\R M 3$: Identity
\(\displaystyle \leadsto \ \ \) \(\displaystyle \frac 1 {x \times y}\) \(=\) \(\displaystyle \frac 1 x \times \frac 1 y\) Real Number Axioms: $\R M 2$: Commutativity

$\blacksquare$


Sources