Product of Subset with Union

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be an algebraic structure.

Let $X, Y, Z \subseteq G$.

Then:

$X \circ \paren {Y \cup Z} = \paren {X \circ Y} \cup \paren {X \circ Z}$
$\paren {Y \cup Z} \circ X = \paren {Y \circ X} \cup \paren {Z \circ X}$

where $X \circ Y$ denotes the subset product of $X$ and $Y$.


Proof 1

Let $x \circ t \in X \circ \paren {Y \cup Z}$.

We have $x \in X, t \in Y \cup Z$ by definition of subset product.

By definition of set union, it follows that $t \in Y$ or $t \in Z$.

So we also have $x \circ t \in X \circ Y$ or $x \circ t \in X \circ Z$.

That is:

$x \circ t \in \paren {X \circ Y} \cup \paren {X \circ Z}$

and so:

$X \circ \paren {Y \cup Z} \subseteq \paren {X \circ Y} \cup \paren {X \circ Z}$


Now let $x \circ t \in \paren {X \circ Y} \cup \paren {X \circ Z}$.

By definition of set union, it follows that $x \circ t \in X \circ Y$ or $x \circ t \in X \circ Z$.

So $x \in X$, and $y \in Y$ or $y \in Z$.

That is, $x \in X$, and $y \in Y \cup Z$ by definition of set union.

Hence:

$x \circ t \in X \circ \paren {Y \cup Z}$

and so:

$\paren {X \circ Y} \cup \paren {X \circ Z} \subseteq X \circ \paren {Y \cup Z}$


That is:

$X \circ \paren {Y \cup Z} = \paren {X \circ Y} \cup \paren {X \circ Z}$


The result:

$\paren {Y \cup Z} \circ X = \paren {Y \circ X} \cup \paren {Z \circ X}$

follows similarly.

$\blacksquare$


Proof 2

Consider the relation $\RR \subseteq G \times G$ defined as:

$\forall g, h \in G: \tuple {g, h} \in \RR \iff \exists g \in X$

Then:

$\forall S \subseteq G: X \circ S = \map \RR S$

Then:

\(\ds X \circ \paren {Y \cup Z}\) \(=\) \(\ds \map \RR {Y \cup Z}\)
\(\ds \) \(=\) \(\ds \map \RR y \cup \map \RR Z\) Image of Union under Relation
\(\ds \) \(=\) \(\ds \paren {X \circ Y} \cup \paren {X \circ Z}\)


Next, consider the relation $\RR \subseteq G \times G$ defined as:

$\forall g, h \in G: \tuple {g, h} \in \RR \iff \exists h \in X$

Then:

$\forall S \subseteq G: S \circ X = \map \RR S$

Then:

\(\ds \paren {Y \cup Z} \circ X\) \(=\) \(\ds \map \RR {Y \cup Z}\)
\(\ds \) \(=\) \(\ds \map \RR Y \cup \map \RR Z\) Image of Union under Relation
\(\ds \) \(=\) \(\ds \paren {Y \circ X} \cup \paren {Z \circ X}\)

$\blacksquare$


Also see


Sources