Product of Sums of Four Squares
Jump to navigation
Jump to search
Theorem
Let $a, b, c, d, w, x, y, z$ be numbers.
Then:
\(\ds \) | \(\) | \(\ds \left({a^2 + b^2 + c^2 + d^2}\right) \left({w^2 + x^2 + y^2 + z^2}\right)\) | ||||||||||||
\(\ds =\) | \(\) | \(\ds \left({a w + b x + c y + d z}\right)^2\) | ||||||||||||
\(\ds \) | \(+\) | \(\ds \left({a x - b w + c z - d y}\right)^2\) | ||||||||||||
\(\ds \) | \(+\) | \(\ds \left({a y - b z - c w + d x}\right)^2\) | ||||||||||||
\(\ds \) | \(+\) | \(\ds \left({a z + b y - c x - d w}\right)^2\) |
Corollary
Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n, c_1, c_2, \ldots, c_n, d_1, d_2, \ldots, d_n$ be integers.
Then:
- $\ds \exists w, x, y, z \in \Z: \prod_{j \mathop = 1}^n \paren {a_j^2 + b_j^2 + c_j^2 + d_j^2} = w^2 + x^2 + y^2 + z^2$
That is, the product of any number of sums of four squares is also a sum of four squares.
Proof 1
Taking each of the squares on the right hand side and multiplying them out in turn:
\(\ds \paren {a w + b x + c y + d z}^2\) | \(=\) | \(\ds a^2 w^2 + b^2 x^2 + c^2 y^2 + d^2 z^2\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds 2 \paren {a b w x + a c w y + a d w z + b c x y + b d x z + c d y z}\) |
\(\ds \paren {a x - b w + c z - d y}^2\) | \(=\) | \(\ds a^2 x^2 + b^2 w^2 + c^2 z^2 + d^2 y^2\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds 2 \paren {-a b w x + a c x z - a d x y - b c w z + b d w y - c d y z}\) |
\(\ds \paren {a y - b z - c w + d x}^2\) | \(=\) | \(\ds a^2 y^2 + b^2 z^2 + c^2 w^2 + d^2 x^2\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds 2 \paren {-a b y z - a c w y + a d x y + b c w z - b d x z - c d w x}\) |
\(\ds \paren {a z + b y - c x - d w}^2\) | \(=\) | \(\ds a^2 z^2 + b^2 y^2 + c^2 x^2 + d^2 w^2\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds 2 \paren {a b y z - a c x z - a d w z - b c x y - b d w y + c d w x}\) |
All the non-square terms cancel out with each other, leaving:
\(\ds \) | \(\) | \(\ds \paren {a w + b x + c y + d z}^2\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {a x - b w + c z - d y}^2\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {a y - b z - c w + d x}^2\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {a z + b y - c x - d w}^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds a^2 w^2 + b^2 x^2 + c^2 y^2 + d^2 z^2\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds a^2 x^2 + b^2 w^2 + c^2 z^2 + d^2 y^2\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds a^2 y^2 + b^2 z^2 + c^2 w^2 + d^2 x^2\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds a^2 z^2 + b^2 y^2 + c^2 x^2 + d^2 w^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a^2 + b^2 + c^2 + d^2} \paren {w^2 + x^2 + y^2 + z^2}\) |
$\blacksquare$
Proof 2
Let:
- $\mathbf m = a \mathbf 1 + b \mathbf i + c \mathbf j + d \mathbf k$
- $\mathbf n = -w \mathbf 1 + x \mathbf i + y \mathbf j + z \mathbf k$
be two quaternions.
Then:
\(\ds \size {\mathbf m} \size {\mathbf n}\) | \(=\) | \(\ds \size {\mathbf m \mathbf n}\) | Quaternion Modulus of Product of Quaternions | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {a^2 + b^2 + c^2 + d^2} \paren {\paren {-w}^2 + x^2 + y^2 + z^2}\) | \(=\) | \(\ds \size {\mathbf m \mathbf n}\) | Definition of Quaternion Modulus | ||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-a w - b x - c y - d z}^2\) | Definition of Quaternion Multiplication | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {a x - b w + c z - d y}^2\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {a y - b z - c w + d x}^2\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {a z + b y - c x - d w}^2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {a^2 + b^2 + c^2 + d^2} \paren {w^2 + x^2 + y^2 + z^2}\) | \(=\) | \(\ds \paren {a w + b x + c y + d z}^2\) | simplifying | ||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {a x - b w + c z - d y}^2\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {a y - b z - c w + d x}^2\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {a z + b y - c x - d w}^2\) |
$\blacksquare$