Properties of Ordered Group

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ, \preccurlyeq}$ be an ordered group with identity $e$.

Let $\prec$ be the reflexive reduction of $\preccurlyeq$.


The following properties hold:

Ordering Compatible with Group Operation is Strongly Compatible

\(\ds \forall x, y, z \in G: \, \) \(\ds x \preccurlyeq y\) \(\iff\) \(\ds x \circ z \preccurlyeq y \circ z\)
\(\ds x \preccurlyeq y\) \(\iff\) \(\ds z \circ x \preccurlyeq z \circ y\)
\(\ds x \prec y\) \(\iff\) \(\ds x \circ z \prec y \circ z\)
\(\ds x \preceq y\) \(\iff\) \(\ds z \circ x \prec z \circ y\)


Corollary

\(\ds \forall x, y \in G: \, \) \(\ds x \preccurlyeq y\) \(\iff\) \(\ds e \preccurlyeq y \circ x^{-1}\)
\(\ds x \preccurlyeq y\) \(\iff\) \(\ds e \preccurlyeq x^{-1} \circ y\)
\(\ds x \preccurlyeq y\) \(\iff\) \(\ds x \circ y^{-1} \preccurlyeq e\)
\(\ds x \preccurlyeq y\) \(\iff\) \(\ds y^{-1} \circ x \preccurlyeq e\)


\(\ds \forall x, y \in G: \, \) \(\ds x \prec y\) \(\iff\) \(\ds e \prec y \circ x^{-1}\)
\(\ds x \prec y\) \(\iff\) \(\ds e \prec x^{-1} \circ y\)
\(\ds x \prec y\) \(\iff\) \(\ds x \circ y^{-1} \prec e\)
\(\ds x \prec y\) \(\iff\) \(\ds y^{-1} \circ x \prec e\)


Inversion Mapping Reverses Ordering in Ordered Group

\(\ds \forall x, y \in G: \, \) \(\ds x \preccurlyeq y\) \(\iff\) \(\ds e \prec y^{-1} \preccurlyeq x^{-1}\)
\(\ds \forall x, y \in S: \, \) \(\ds x \prec y\) \(\iff\) \(\ds y^{-1} \prec x^{-1}\)


Corollary

\(\ds \forall x \in G: \, \) \(\ds x \preccurlyeq e\) \(\iff\) \(\ds e \preccurlyeq x^{-1}\)
\(\ds e \preccurlyeq x\) \(\iff\) \(\ds x^{-1} \preccurlyeq e\)
\(\ds x \prec e\) \(\iff\) \(\ds e \prec x^{-1}\)
\(\ds e \prec x\) \(\iff\) \(\ds x^{-1} \prec e\)


Operating on Ordered Group Inequalities

If $x \prec y$ and $z \prec w$, then $x \circ z \prec y \circ w$.

If $x \prec y$ and $z \preccurlyeq w$, then $x \circ z \prec y \circ w$.

If $x \preccurlyeq y$ and $z \prec w$, then $x \circ z \prec y \circ w$.

If $x \preccurlyeq y$ and $z \preccurlyeq w$, then $x \circ z \preccurlyeq y \circ w$.


Power Function Preserves Ordering in Ordered Group

Let $n \in \N_{>0}$ be a strictly positive integer.

Let $\prec$ be the reflexive reduction of $\preccurlyeq$.


Then the following hold:

\(\ds \forall x, y \in S: \, \) \(\ds x \preccurlyeq y\) \(\implies\) \(\ds x^n \preccurlyeq y^n\)
\(\ds \forall x, y \in S: \, \) \(\ds x \prec y\) \(\implies\) \(\ds x^n \prec y^n\)

where $x^n$ denotes the $n$th power of $x$.


Also see