Prosthaphaeresis Formulas

From ProofWiki
Jump to navigation Jump to search

Theorem

Sine plus Sine

$\sin \alpha + \sin \beta = 2 \, \map \sin {\dfrac {\alpha + \beta} 2} \, \map \cos {\dfrac {\alpha - \beta} 2}$


Sine minus Sine

$\sin \alpha - \sin \beta = 2 \cos \left({\dfrac {\alpha + \beta} 2}\right) \sin \left({\dfrac {\alpha - \beta} 2}\right)$


Cosine plus Cosine

$\cos \alpha + \cos \beta = 2 \, \map \cos {\dfrac {\alpha + \beta} 2} \, \map \cos {\dfrac {\alpha - \beta} 2}$


Cosine minus Cosine

$\cos \alpha - \cos \beta = -2 \, \map \sin {\dfrac {\alpha + \beta} 2} \, \map \sin {\dfrac {\alpha - \beta} 2}$


Hyperbolic Sine plus Hyperbolic Sine

$\sinh x + \sinh y = 2 \sinh \left({\dfrac {x + y} 2}\right) \cosh \left({\dfrac {x - y} 2}\right)$


Hyperbolic Sine minus Hyperbolic Sine

$\sinh x - \sinh y = 2 \cosh \left({\dfrac {x + y} 2}\right) \sinh \left({\dfrac {x - y} 2}\right)$


Hyperbolic Cosine plus Hyperbolic Cosine

$\cosh x + \cosh y = 2 \cosh \left({\dfrac {x + y} 2}\right) \cosh \left({\dfrac {x - y} 2}\right)$


Hyperbolic Cosine minus Hyperbolic Cosine

$\cosh x - \cosh y = 2 \, \map \sinh {\dfrac {x + y} 2} \, \map \sinh {\dfrac {x - y} 2}$


Also see


Linguistic Note

The word prosthaphaeresis or prosthapheiresis is a neologism coined some time in the $16$th century from the two Greek words:

prosthesis, meaning addition
aphaeresis or apheiresis, meaning subtraction.

With the advent of machines to aid the process of arithmetic, this word now has only historical significance.

Ian Stewart, in his Taming the Infinite from $2008$, accurately and somewhat diplomatically describes the word as "ungainly".


Sources