Pullback of Quotient Group Isomorphism/Examples/C6 with A4
Jump to navigation
Jump to search
Example of Pullback of Quotient Group Isomorphism
Let $G = C_6$ be the cyclic group of order $6$:
- $G = \gen x$
Let $H = A_4$ be the alternating group on $4$ letters.
Let $e_G$ and $e_H$ denote the identity elements of $G$ and $H$ respectively.
Let $N$ be the subgroup of $G$:
- $N = \gen {x^3}$
which from Subgroup of Abelian Group is Normal is normal.
Let $K$ be the subgroup of $H$:
- $\set {e_H, \tuple {1 2} \tuple {3 4}, \tuple {1 3} \tuple {2 4}, \tuple {1 4} \tuple {2 3} }$
which from Klein Four-Group is Normal in A4 is normal.
Let $\theta: G / N \to H / K$ be the mapping defined as:
- $\forall M \in G / N: \map \theta M = \begin{cases} K & : M = N \\ \tuple {1 2 3} K & : M = x N \\ \tuple {1 3 2} K & : M = x^2 N \end{cases}$
The pullback of $G$ and $H$ by $\theta$ is:
- $G \times^\theta H = \set {\tuple {e_G, e_H}, \tuple {e_G, \tuple {1 2} \tuple {3 4} }, \tuple {e_G, \tuple {1 3} \tuple {2 4} }, \tuple {e_G, \tuple {1 4} \tuple {2 3} }, \\ \tuple {x^3, e_H}, \tuple {x^3, \tuple {1 2} \tuple {3 4} }, \tuple {x^3, \tuple {1 3} \tuple {2 4} }, \tuple {x^3, \tuple {1 4} \tuple {2 3} }, \\ \tuple {x, \tuple {1 2 3} }, \tuple {x, \tuple {1 3 4} }, \tuple {x, \tuple {2 4 3} }, \tuple {x, \tuple {1 4 2} }, \\ \tuple {x^4, \tuple {1 2 3} }, \tuple {x^4, \tuple {1 3 4} }, \tuple {x^4, \tuple {2 4 3} }, \tuple {x^4, \tuple {1 4 2} }, \\ \tuple {x^2, \tuple {1 3 2} }, \tuple {x^2, \tuple {1 4 3} }, \tuple {x^2, \tuple {2 3 4} }, \tuple {x^2, \tuple {1 2 4} }, \\ \tuple {x^5, \tuple {1 3 2} }, \tuple {x^5, \tuple {1 4 3} }, \tuple {x^5, \tuple {2 3 4} }, \tuple {x^5, \tuple {1 2 4} } }$
![]() | Although this article appears correct, it's inelegant. There has to be a better way of doing it. In particular: Any ideas on improving the layout of the above, anyone? You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by redesigning it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Improve}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Proof
![]() | This theorem requires a proof. In particular: Just a matter of calculation, I believe You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $13$: Direct products: Exercise $5$