Quadratic Equation/Examples/z^6 + z^3 + 1 = 0

From ProofWiki
Jump to navigation Jump to search

Example of Quadratic Equation

The sextic equation:

$z^6 + z^3 + 1 = 0$

has the solutions:

$z = \begin{cases} \cos \dfrac {2 \pi} 9 \pm i \sin \dfrac {2 \pi} 9 \\ \cos \dfrac {4 \pi} 9 \pm i \sin \dfrac {4 \pi} 9 \\ \cos \dfrac {8 \pi} 9 \pm i \sin \dfrac {8 \pi} 9 \end{cases}$


Proof 1

Although this is a sextic in $z$, it can be solved as a quadratic in $z^3$.

From the Quadratic Formula:

\(\ds z^6 + z^3 + 1\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds z^3\) \(=\) \(\ds \dfrac {-1 \pm \sqrt {1^2 - 4 \times 1 \times 1} } {2 \times 1}\) Quadratic Formula: $a = 1$, $b = 1$, $c = 1$
\(\ds \) \(=\) \(\ds -1 \pm \dfrac {\sqrt {-3} } 2\) simplifying
\(\ds \) \(=\) \(\ds -\dfrac 1 2 \pm i \dfrac {\sqrt 3} 2\) Definition of Imaginary Unit

$\Box$


$-\dfrac 1 2 \pm i \dfrac {\sqrt 3} 2$ are recognised as the complex cube roots of unity, and so:

\(\ds z^3\) \(=\) \(\ds e^{\pm 2 i \pi / 3}\)
\(\ds \) \(=\) \(\ds \cos \dfrac {2 \pi} 3 \pm i \sin \dfrac {2 \pi} 3\)


It remains to solve for $z$.

By Roots of Complex Number:

$z = \set {w \alpha^k: k \in \set {1, 2, \ldots, n - 1} }$

where:

$w$ is a cube root of $e^{\pm 2 i \pi / 3}$
$\alpha$ is one of the complex cube roots of unity.


Taking $z^3 = e^{2 i \pi / 3}$:

\(\ds z\) \(=\) \(\ds e^{2 i \pi / 9} e^{2 k i \pi / 3}\)
\(\ds \) \(=\) \(\ds e^{2 i \pi / 9 + 2 k i \pi / 3}\)
\(\ds \) \(=\) \(\ds \cos \paren {\dfrac {2 \pi} 9 + \dfrac {2 k \pi} 3} + i \sin \paren {\dfrac {2 \pi} 9 + \dfrac {2 k \pi} 3}\)
\(\ds \) \(=\) \(\ds \begin{cases} \cos \dfrac {2 \pi} 9 + i \sin \dfrac {2 \pi} 9 \\ \cos \dfrac {8 \pi} 9 + i \sin \dfrac {8 \pi} 9 \\ \cos \dfrac {14 \pi} 9 + i \sin \dfrac {14 \pi} 9 \end{cases}\)


The roots obtained by taking $z^3 = e^{-2 i \pi / 3}$ can be calculated as above:

\(\ds z\) \(=\) \(\ds e^{-2 i \pi / 9} e^{2 k i \pi / 3}\)
\(\ds \) \(=\) \(\ds e^{-2 i \pi / 9 + 2 k i \pi / 3}\)
\(\ds \) \(=\) \(\ds \cos \paren {\dfrac {-2 \pi} 9 + \dfrac {2 k \pi} 3} + i \sin \paren {\dfrac {-2 \pi} 9 + \dfrac {2 k \pi} 3}\)
\(\ds \) \(=\) \(\ds \begin{cases} \cos \dfrac {2 \pi} 9 - i \sin \dfrac {2 \pi} 9 \\ \cos \dfrac {4 \pi} 9 + i \sin \dfrac {4 \pi} 9 \\ \cos \dfrac {10 \pi} 9 + i \sin \dfrac {10 \pi} 9 \end{cases}\)


We note that:

\(\ds \cos \dfrac {14 \pi} 9 + i \sin \dfrac {14 \pi} 9\) \(=\) \(\ds \cos \paren {2 \pi - \dfrac {4 \pi} 9} + i \sin \paren {2 \pi - \dfrac {4 \pi} 9}\)
\(\ds \) \(=\) \(\ds \cos \dfrac {4 \pi} 9 - i \sin \dfrac {4 \pi} 9\)


and:

\(\ds \cos \dfrac {10 \pi} 9 + i \sin \dfrac {10 \pi} 9\) \(=\) \(\ds \cos \paren {2 \pi - \dfrac {8 \pi} 9} + i \sin \paren {2 \pi - \dfrac {8 \pi} 9}\)
\(\ds \) \(=\) \(\ds \cos \dfrac {8 \pi} 9 - i \sin \dfrac {8 \pi} 9\)

$\blacksquare$


Proof 2

From Complex Algebra Examples $z^6 + z^3 + 1$:

$z^6 + z^3 + 1 = \paren {z^2 - 2 z \cos \dfrac {2 \pi} 9 + 1} \paren {z^2 - 2 z \cos \dfrac {4 \pi} 9 + 1} \paren {z^2 - 2 z \cos \dfrac {8 \pi} 9 + 1}$

Then from Complex Roots of Unity occur in Conjugate Pairs:

$\paren {z^2 - 2 z \cos \dfrac {2 k \pi} 9 + 1} = \paren {z - \paren {\cos \dfrac {2 k \pi} 9 + i \sin \dfrac {2 k \pi} 9} } \paren {z - \paren {\cos \dfrac {2 k \pi} 9 - i \sin \dfrac {2 k \pi} 9} }$

for each $k$.

The result follows.

$\blacksquare$