Quotient Group is Abelian iff All Commutators in Divisor
Jump to navigation
Jump to search
Theorem
Let $G$ be a group.
Let $N$ be a normal subgroup of $G$.
Let $G / N$ be the quotient group of $G$ by $N$.
Then the quotient group $G / N$ is abelian if and only if:
- $\forall x, y \in G: \sqbrk {x, y} \in N$
where $\sqbrk {x, y}$ denotes the commutator of $x$ and $y$.
That is, if and only if $x y x^{-1} y^{-1} \in N$ for all $x, y \in G$.
Proof 1
Let $x, y \in G$.
First we establish the following:
\(\ds \paren {x N} \paren {y N}\) | \(=\) | \(\ds \paren {y N} \paren {x N}\) | ||||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \paren {x N} \paren {y N}\) | \(=\) | \(\ds \paren {y N} \paren {x N} N\) | Quotient Group is Group: $N$ is the identity of $G / N$ | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \paren {x N}^{-1} \paren {y N}^{-1} \paren {x N} \paren {y N}\) | \(=\) | \(\ds N\) | applying $\paren {x N}^{-1} \paren {y N}^{-1}$ to both sides | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \sqbrk {x N, y N}\) | \(=\) | \(\ds N\) | Definition of Commutator of Group Elements | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \sqbrk {x, y} N\) | \(=\) | \(\ds N\) | Commutator of Quotient Group Elements | ||||||||||
\(\text {(1)}: \quad\) | \(\ds \leadstoandfrom \ \ \) | \(\ds \sqbrk {x, y}\) | \(\in\) | \(\ds N\) | Commutator of Quotient Group Elements |
$\Box$
Sufficient Condition
Let $G / N$ be abelian.
Then by definition:
- $\forall x, y \in G: \paren {x N} \paren {y N} = \paren {y N} \paren {x N}$
and it follows from $(1)$ that:
- $\forall x, y \in G: \sqbrk {x, y} \in N$
$\Box$
Necessary Condition
Conversely, let:
- $\forall x, y \in G: \sqbrk {x, y} \in N$
Again it follows from $(1)$ that:
- $\forall x, y \in G: \paren {x N} \paren {y N} = \paren {y N} \paren {x N}$
That is, that $G / N$ is abelian.
$\blacksquare$
Proof 2
Let $G / N$ be abelian.
Then:
\(\ds \forall a N, b N \in G / N: \, \) | \(\ds a N b N\) | \(=\) | \(\ds b N a N\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a b N\) | \(=\) | \(\ds b a N\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a b \paren {b a}^{-1}\) | \(\in\) | \(\ds N\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a b a^{-1} b^{-1}\) | \(\in\) | \(\ds N\) |
$\blacksquare$
The argument reverses.
Suppose that $\forall a, b \in G: a b a^{-1} b^{-1} \in N$.
\(\ds \forall a, b \in G: \, \) | \(\ds a b a^{-1} b^{-1}\) | \(\in\) | \(\ds N\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a b \paren {b a}^{-1}\) | \(\in\) | \(\ds N\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a b N\) | \(=\) | \(\ds b a N\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a N b N\) | \(=\) | \(\ds b N a N\) |
Hence the result.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {II}$: New Structures from Old: $\S 11$: Quotient Structures: Exercise $11.13$
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: Conjugacy, Normal Subgroups, and Quotient Groups: $\S 47 \zeta$
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): Chapter $8$: Homomorphisms, Normal Subgroups and Quotient Groups: Exercise $16$